首页 » 文章 » 文章详细信息
Mobile Information Systems Volume 2018 ,2018-12-02
SRAF: A Service-Aware Resource Allocation Framework for VM Management in Mobile Data Networks
Research Article
Kang Liu 1 Ruijuan Zheng 1 Mingchuan Zhang 1 Chao Han 2 Junlong Zhu 1 Qingtao Wu 1
Show affiliations
DOI:10.1155/2018/1904636
Received 2018-09-11, accepted for publication 2018-10-25, Published 2018-10-25
PDF
摘要

Service latency and resource utilization are the key factors which limit the development of mobile data networks. To this end, we present a service-aware resource allocation framework, called SRAF, to allocate the basic resources by managing virtual machine (VM). In SRAF, we design two new methods for better virtual machine (VM) management. Firstly, we propose the self-learning classification algorithm (SCA) which executes the service request classification. Then, we use the classification results to schedule different types of VMs. Secondly, we design a sharing mode to jointly execute service requests, which can share the CPU and bandwidth simultaneously. In order to enhance the utilization of resources with the sharing mode, we also design two scaling algorithms, i.e., the horizontal scaling and the vertical scaling, which execute the operation of resource-level scaling and VM-level scaling, respectively. Furthermore, to enhance the stability of SRAF and avoid the frequent operation of scaling, we introduce a Markov decision process (MDP) to control VM migration. The experimental results reveal that SRAF greatly reduces service latency and enhances resource utilization. In addition, SRAF also has a good performance on stability and robustness for different situations of congestion.

授权许可

Copyright © 2018 Kang Liu et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The sharing mode of the high-type VMs.

Architecture of the SRAF framework.

An example for the sharing mode.

The quantity ratios of three statuses in all tasks.

The utilization of bandwidth and CPU in SRAF and Symbiosis frameworks at each deadline.

The total execution time (a) and additional execution time (b) of SRAF, Symbiosis, and Symbiosis + vm-mi frameworks at each deadline.

The total cost (a) and additional cost (b) of SRAF, Symbiosis, and Symbiosis + vm-mi frameworks at each deadline.

The bandwidth utilization of SRAF, Symbiosis, and SVM at different λ.

The corresponding CPU utilization of SRAF, Symbiosis, and SVM.

The corresponding cost of SRAF, Symbiosis, and SVM at different λ.

通讯作者

Ruijuan Zheng.College of Information Engineering, Henan University of Science and Technology, Luoyang 471000, China, haust.edu.cn.zhengruijuan@haust.edu.cn

推荐引用方式

Kang Liu,Ruijuan Zheng,Mingchuan Zhang,Chao Han,Junlong Zhu,Qingtao Wu. SRAF: A Service-Aware Resource Allocation Framework for VM Management in Mobile Data Networks. Mobile Information Systems ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Chen, C. Chen, Y. Liang. Optimized TF-IDF algorithm with the adaptive weight of position of word. . DOI: 10.1109/tnsm.2018.2790081.
[2] M. Kumar, S. C. Sharma. Priority Aware Longest Job First (PA-LJF) algorithm for utilization of the resource in cloud environment. :16-18. DOI: 10.1109/tnsm.2018.2790081.
[3] S. I. Gass, M. C. Fu. (2013). Bellman Optimality Equation. DOI: 10.1109/tnsm.2018.2790081.
[4] S. Guo, B. Xiao, Y. Yang. Energy-efficient dynamic offloading and resource scheduling in mobile cloud computing. :1-9. DOI: 10.1109/tnsm.2018.2790081.
[5] T. Liu, D. Tao. (2016). Classification with noisy labels by importance reweighting. IEEE Transactions on Pattern Analysis & Machine Intelligence.38(3):447-461. DOI: 10.1109/tnsm.2018.2790081.
[6] H. Hajimirsadeghi, G. Mori. (2017). Multi-instance classification by max-margin training of cardinality-based Markov networks. IEEE Transactions on Pattern Analysis and Machine Intelligence.39(9):1836-1852. DOI: 10.1109/tnsm.2018.2790081.
[7] S. Kumar, G. Kumar, K. Jain. (2018). an approach to reduce turn around timeand waiting timeby the selection of round robin and shortest job first algorithm. International Journal of Engineering and Technology.7(2):667-677. DOI: 10.1109/tnsm.2018.2790081.
[8] S. Chen, Y. Wang, M. Pedram. A semi-Markovian decision process based control method for offloading tasks from mobile devices to the cloud. :2885-2890. DOI: 10.1109/tnsm.2018.2790081.
[9] Z. Li. (2018). An adaptive overload threshold selection process using Markov decision processes of virtual machine in cloud data center. Cluster Computing.2018:1-13. DOI: 10.1109/tnsm.2018.2790081.
[10] N. Armanfard, J. P. Reilly, M. Komeili. (2016). Local feature selection for data classification. IEEE Transactions on Pattern Analysis and Machine Intelligence.38(6):1217-1227. DOI: 10.1109/tnsm.2018.2790081.
[11] L. Xu, J. Cao, Y. Wang, L. Yang. et al.Bejo: behavior based job classification for resource consumption prediction in the cloud. :10-17. DOI: 10.1109/tnsm.2018.2790081.
[12] Y. Zhao, N. Calheiros, G. Gange, K. Ramamohanarao. et al.SLA-based resource scheduling for big data analytics as a service in cloud computing environments. :510-519. DOI: 10.1109/tnsm.2018.2790081.
[13] Q. Xie, Y. Lu. Priority algorithm for near-data scheduling: throughput and heavy-traffic optimality. :963-972. DOI: 10.1109/tnsm.2018.2790081.
[14] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose. et al.(2011). CloudSim: a toolkit for modeling and simulation of Cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and Experience.41(1):23-50. DOI: 10.1109/tnsm.2018.2790081.
[15] J. Zhang, Y. Han, J. Jiang. (2017). Semi-supervised tensor learning for image classification. Multimedia Systems.23(1):63-73. DOI: 10.1109/tnsm.2018.2790081.
[16] C. Birkestrand, J. Heyrman, C. Prosser. Virtual machine placement in a cloud computing environment based on factors including optimized processor-memory affinity. . DOI: 10.1109/tnsm.2018.2790081.
[17] B. P. R Killi, S. V. Rao. (2017). Capacitated next controller placement in software defined networks. IEEE Transactions on Network & Service Management.14(3):514-527. DOI: 10.1109/tnsm.2018.2790081.
[18] D. Kovachev, Y. Cao, R. Klamma. Learn-as-you-go: new ways of cloud-based micro-learning for the mobile web. :51-61. DOI: 10.1109/tnsm.2018.2790081.
[19] J. Li, R. Ma, H. Guan, S. David. et al.(2017). Accurate CPU proportional share and predictable I/O responsiveness for virtual machine monitor: a case study in Xen. IEEE Transactions Cloud Computation.5(4):604-616. DOI: 10.1109/tnsm.2018.2790081.
[20] B. Taylor, M. Hendrickx, F. Glineur. (2017). Smooth strongly convex interpolation and exact worst-case performance of first-order methods. Mathematical Programming.161(1-2):307-345. DOI: 10.1109/tnsm.2018.2790081.
[21] C. Sing, N. Metz, S. Dudli. (2017). Machine learning-based classification of 38 Years of spine-related literature into 100 research topics. Spine.42(11):863-870. DOI: 10.1109/tnsm.2018.2790081.
[22] Z. Han, H. Tan, G. Chen. Dynamic virtual machine management via approximate Markov decision process. :1-9. DOI: 10.1109/tnsm.2018.2790081.
[23] B. Legros. (2018). M/G/1 queue with event-dependent arrival rates. Queueing Systems.89(3-4):269-301. DOI: 10.1109/tnsm.2018.2790081.
[24] N. T. Argon, C. Deng, V. G. Kulkarni. (2017). Optimal control of a single server in a finite-population queueing network. Queueing Systems.85(1-2):149-172. DOI: 10.1109/tnsm.2018.2790081.
[25] K. Katsalis, G. Papaioannou, N. Nikaein, T. Leandros. et al.SLA-driven VM scheduling in mobile edge computing. :750-757. DOI: 10.1109/tnsm.2018.2790081.
[26] J. Jiang, S. Ma, B. Li. Symbiosis: network-aware task scheduling in data-parallel frameworks. :1-9. DOI: 10.1109/tnsm.2018.2790081.
[27] A. Heydari. (2018). Stability analysis of optimal adaptive control using value iteration with approximation errors. IEEE Transactions on Automatic Control.63(9):3119-3126. DOI: 10.1109/tnsm.2018.2790081.
[28] A. Mukherjee, D. De, D. Roy. (2016). A power and latency aware cloudlet selection strategy for multi-cloudlet environment. IEEE Transactions Cloud Computation.99(99):1. DOI: 10.1109/tnsm.2018.2790081.
[29] D. P. Bertsekas. (1995). Dynamic Programming and Optimal Control.2. DOI: 10.1109/tnsm.2018.2790081.
[30] T. X. Tran, D. Pompili. Dynamic radio cooperation for downlink cloud-RANs with computing resource sharing. :118-126. DOI: 10.1109/tnsm.2018.2790081.
[31] B. Yang, K. Chai, Z. Xu, K. Katsaros. et al.(2018). Cost-efficient NFV-enabled mobile edge-cloud for low latency mobile applications. IEEE Transactions on Network and Service Management.15(1):475-488. DOI: 10.1109/tnsm.2018.2790081.
[32] H. J. Kim, H. I. Kim, J. W. Chang. A privacy-preserving kNN classification algorithm using Yao’s Garbled circuit on cloud computing. :766-769. DOI: 10.1109/tnsm.2018.2790081.
[33] A. L. Jin, W. Song, P. Wang. (2016). Auction mechanisms toward efficient resource sharing for cloudlets in mobile cloud computing. IEEE Transactions on Services Computing.9(6):895-909. DOI: 10.1109/tnsm.2018.2790081.
文献评价指标
浏览 69次
下载全文 21次
评分次数 0次
用户评分 0.0分
分享 0次