首页 » 文章 » 文章详细信息
Journal of Combustion Volume 2018 ,2018-12-06
Review of Oxidation of Gasoline Surrogates and Its Components
Review Article
J. A. Piehl 1 A. Zyada 1 L. Bravo 2 O. Samimi-Abianeh 1
Show affiliations
DOI:10.1155/2018/8406754
Received 2018-07-14, accepted for publication 2018-11-13, Published 2018-11-13
PDF
摘要

There has been considerable progress in the area of fuel surrogate development to emulate gasoline fuels’ oxidation properties. The current paper aims to review the relevant hydrocarbon group components used for the formulation of gasoline surrogates, review specific gasoline surrogates reported in the literature, outlining their utility and deficiencies, and identify the future research needs in the area of gasoline surrogates and kinetics model.

授权许可

Copyright © 2018 J. A. Piehl et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Simulated ignition delay times for the pure components in air at a pressure of 20 and 40 bar and equivalence ratio of Φ=0.5. Simulations were carried out using Samimi Abianeh et al. [19] kinetic model in an adiabatic constant-volume model. Gasoline RD387 ignition delay experimental data were taken from Kukkadapu et al. [23] and Gauthier et al. [10] for comparison purpose.

Heptane isomers Top: most reactive, Middle: least reactive, and Bottom: intermediate reactivity. Picture is adopted from [24].

Simulated ignition delay times for the hexane isomers in air at pressures of 5 and 10 bar and an equivalence ratio of Φ=1. Simulations were carried out using the kinetic mechanisms as developed by [25] in an adiabatic constant-volume model.

Pentene isomers.

Simulated ignition delay times for the pentene and hexene isomers in air at pressures of 20 and 40 bar and an equivalence ratio of 0.5. Simulations were carried out using Mehl et al.’s [13] model in an adiabatic constant-volume model.

Ignition delay times of cyclohexane at equivalence ratio of 1 in the pressure range of 7-9 atm (right), 11-14 atm (left) from a RCM investigation and model-predicted values (line) at 8 atm (left) and 12.5 atm (right). Open symbols and dashed line correspond to cool flame delay times. Picture is adopted from Silke et al. [26].

Approximate ranges of paraffins, naphthenes, olefins, and aromatics in commercial US gasoline. Figure is adopted from Pitz et al. [26].

Ignition time measurements [27] for toluene/air mixtures at 12 and 50 atm at Φ = 0.5 comparing the predictions of three kinetic mechanisms, Pitz et al. [28], Andrae et al. [29], and Sakai et al. [30]. Ignition times were scaled to 12 and 50 atm to account for slight deviations in reflected shock pressure by P−0.50 as determined by regression analysis. Figure is adopted from Shen et al. [27].

Autoignition delays of low alkylbenzenes around 900 K versus pressure at top dead center (TDC). Test at Φ=1, (O2)/(Inert) = 0.27 and TTDC=907±6 K. Numbers correspond to the following: 1: toluene; 2: 1,3,5-trimethylbenzene; 3: p-xylene; 4: m-xylene; 5: o-xylene; 6: 1,2,3-trimethylbenzene; 7: ethyltoluene; 8: 1,2,4-trimethylbenzene; 9: n-propylbenzene; 10: ethylbenzene; 11: n-butylbenzene. Figure is adopted from Roubaud [31].

Distillation curves for gasoline RD387 fuel and surrogates. The simulated distillation curves are based on the staged equilibrium distillation model.

Comparison of RD387 experimental and simulated surrogate total ignition delay times. Experimental data is from Kukkadapu et al. [23] and Gauthier et al. [10]. Surrogate simulations were carried out using the PRF87 surrogate and mechanism model of Samimi Abianeh et al. [19]. Measured shock tube data are shown using □ at two approximate temperatures of 1000 K and 1100 K.

Comparison of experimental and simulated first-stage ignition delay times. Experimental data is from Kukkadapu et al. [23]. Surrogate simulations were carried out using the PRF87 surrogate and mechanism model of Samimi Abianeh et al. [19].

Comparison of RD387 experimental and simulated surrogate total ignition delay times. Experimental data is from Kukkadapu et al. [23] and Gauthier et al. [10]. Surrogate simulations were carried out using Khan [32], Chaos et al. [12], and Vanhove et al. [11] surrogates using the mechanism of Samimi Abianeh et al. [19]. Measured shock tube data are shown using □ at two approximate temperatures of 1000 K and 1100 K.

Comparison of experimental and simulated first-stage ignition delay times. Experimental data is from Kukkadapu et al. [23]. Surrogate simulations were carried out using Khan [32] and Chaos et al. [12] surrogates using the mechanism of Samimi Abianeh et al. [19].

Comparison of RD387 experimental and simulated surrogate total ignition delay times. Experimental data is from Kukkadapu et al. [23] and Gauthier et al. [10]. Surrogate simulations were carried out using Naik et al. [33] surrogates using the mechanism of Samimi Abianeh et al. [19]. Measured shock tube data are shown using □ at two approximate temperatures of 1000 K and 1100 K.

Comparison of experimental and simulated first-stage ignition delay times. Experimental data is from Kukkadapu et al. [23]. Surrogate simulations were carried out using Naik et al. [33] surrogates using the mechanism of Samimi Abianeh et al. [19].

Comparison of RD387 experimental and simulated surrogate total ignition delay times. Experimental data is from Kukkadapu et al. [23] and Gauthier et al. [10]. Surrogate simulations were carried out using Mehl et al. [13], Gauither et al. [10], and Samimi Abianeh et al. [19] surrogates using the mechanism of Samimi Abianeh et al. [19]. Measured shock tube data are shown using □ at two approximate temperatures of 1000 K and 1100 K.

Comparison of experimental and simulated first-stage ignition delay times. Experimental data is from Kukkadapu et al. [23]. Surrogate simulations were carried out using Mehl et al. [13], Gauither et al. [10], and Samimi Abianeh et al. [19] surrogates using the mechanism of Samimi Abianeh et al. [19].

Comparison of measured gasoline laminar flame speeds and several modeled gasoline surrogates. Unburned gas temperature is 373 K and the oxygen mole fraction in air is 0.205 for both the experiments and simulations. Measured data is from Jerzembeck et al. [34].

Sensitivity analysis for total ignition delays for prediction of ignition under constant-volume conditions at initial conditions of 900 K, 40 bar, and fuel-air equivalence ratio of 1.0.

Sensitivity analysis for total ignition delays for prediction of ignition under constant-volume conditions at initial conditions of 715 K, 40 bar, and fuel-air equivalence ratio of 1.0.

通讯作者

O. Samimi-Abianeh.Mechanical Engineering Department of Wayne State University, Detroit, MI 48202, USA.o.samimi@wayne.edu

推荐引用方式

J. A. Piehl,A. Zyada,L. Bravo,O. Samimi-Abianeh. Review of Oxidation of Gasoline Surrogates and Its Components. Journal of Combustion ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Workbench. (2010). Reaction Design Inc. DOI: 10.1016/S0017-9310(01)00173-9.
[2] T. J. Bruno. (2007). The Properties of S-8 and JP-10. Report prepared for Wright Laboratory Aero Propulsion Power Directorate under MIPR F4FBEY6346G001. DOI: 10.1016/S0017-9310(01)00173-9.
[3] D. B. Lenhert, D. L. Miller, N. P. Cernansky, K. G. Owens. et al.(2009). The oxidation of a gasoline surrogate in the negative temperature coefficient region. Combustion and Flame.156(3):549-564. DOI: 10.1016/S0017-9310(01)00173-9.
[4] A. A. Konnov. (2009). Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism. Combustion and Flame.156(11):2093-2105. DOI: 10.1016/S0017-9310(01)00173-9.
[5] T. Edwards, L. Q. Maurice. (2001). Surrogate mixtures to represent complex aviation and rocket fuels. Journal of Propulsion and Power.17(2):461-466. DOI: 10.1016/S0017-9310(01)00173-9.
[6] L. R. Cancino, M. Fikri, A. A. M. Oliveira, C. Schulz. et al.(2011). Ignition delay times of ethanol-containing multi-component gasoline surrogates: Shock-tube experiments and detailed modeling. Fuel.90(3):1238-1244. DOI: 10.1016/S0017-9310(01)00173-9.
[7] B. E. Pooling, J. M. Prausnitz, J. P. OConnell. (2000). The Progress of Gasses and Liquids. DOI: 10.1016/S0017-9310(01)00173-9.
[8] CHEMKIN-PRO. (2010). Reaction Design Inc. DOI: 10.1016/S0017-9310(01)00173-9.
[9] X. Hui, A. K. Das, K. Kumar, C.-J. Sung. et al.(2012). Laminar flame speeds and extinction stretch rates of selected aromatic hydrocarbons. Fuel.97:695-702. DOI: 10.1016/S0017-9310(01)00173-9.
[10] M. Ribaucour, R. Minetti, L. R. Sochet, H. J. Curran. et al.(2000). Ignition of isomers of pentane: An experimental and kinetic modeling study. Proceedings of the Combustion Institute.28(2):1671-1678. DOI: 10.1016/S0017-9310(01)00173-9.
[11] D. Bradley, S. E.-D. Habik, S. A. El-Sherif. (1991). A generalization of laminar burning velocities and volumetric heat release rates. Combustion and Flame.87(3-4):336-345. DOI: 10.1016/S0017-9310(01)00173-9.
[12] D. Kang, S. V. Bohac, A. L. Boehman, S. Cheng. et al.(2017). Autoignition studies of C5 isomers in a motored engine. Proceedings of the Combustion Institute.36(3):3597-3604. DOI: 10.1016/S0017-9310(01)00173-9.
[13] C. K. Westbrook, W. J. Pitz, M. Mehl, P.-A. Glaude. et al.(2015). Experimental and kinetic modeling study of 2-methyl-2-butene: allylic hydrocarbon kinetics. The Journal of Physical Chemistry A.119(28):7462-7480. DOI: 10.1016/S0017-9310(01)00173-9.
[14] S. L. Outcalt, A. Laesecke, K. J. Brumback. (2009). Thermophysical properties measurements of rocket propellants RP-1 and RP-2. Journal of Propulsion and Power.25(5):1032-1040. DOI: 10.1016/S0017-9310(01)00173-9.
[15] S. Gaïl, P. Dagaut. (2007). Oxidation of m-xylene in a jsr: Experimental study and detailed chemical kinetic modeling. Combustion Science and Technology.179(5):813-844. DOI: 10.1016/S0017-9310(01)00173-9.
[16] S. S. Sazhin, A. Elwardany, P. A. Krutitskii, G. Castanet. et al.(2010). A simplified model for bi-component droplet heating and evaporation. International Journal of Heat and Mass Transfer.53(21-22):4495-4505. DOI: 10.1016/S0017-9310(01)00173-9.
[17] M. Yahyaoui, N. Djebaïli-Chaumeix, P. Dagaut, C. Paillard. et al.(2007). Ignition and oxidation of 1-hexene/toluene mixtures in a shock tube and a jet-stirred reactor: Experimental and kinetic modeling study. International Journal of Chemical Kinetics.39(9):518-538. DOI: 10.1016/S0017-9310(01)00173-9.
[18] Y. Ra, R. D. Reitz. (2009). A vaporization model for discrete multi-component fuel sprays. International Journal of Multiphase Flow.35(2):101-117. DOI: 10.1016/S0017-9310(01)00173-9.
[19] W. K. Metcalfe, S. M. Burke, S. S. Ahmed, H. J. Curran. et al.(2013). A hierarchical and comparative kinetic modeling study of C1 - C2 hydrocarbon and oxygenated fuels. International Journal of Chemical Kinetics.45(10):638-675. DOI: 10.1016/S0017-9310(01)00173-9.
[20] . DOI: 10.1016/S0017-9310(01)00173-9.
[21] H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook. et al.(1995). Autoignition chemistry of the hexane isomers: An experimental and kinetic modeling study. SAE Technical Papers. DOI: 10.1016/S0017-9310(01)00173-9.
[22] P. Dagaut, M. Reuillon, M. Cathonnet, D. Voisin. et al.(1995). High pressure oxidation of normal decane and kerosene in dilute conditions from low to high temperature. Chemistry Physics.92:47-76. DOI: 10.1016/S0017-9310(01)00173-9.
[23] C. K. Westbrook, W. J. Pitz, J. E. Boercker, H. J. Curran. et al.(2002). Detailed chemical kinetic reaction mechanisms for autoignition of isomers of heptane under rapid compression. Proceedings of the Combustion Institute.29(1):1311-1318. DOI: 10.1016/S0017-9310(01)00173-9.
[24] S. Honnet, K. Seshadri, U. Niemann, N. Peters. et al.(2009). A surrogate fuel for kerosene. Proceedings of the Combustion Institute.32:485-492. DOI: 10.1016/S0017-9310(01)00173-9.
[25] U. Pfahl, K. Fieweger, G. Adomeit. Self-ignition of diesel-relevant hydrocarbon-air mixtures under engine conditions. .26:781-789. DOI: 10.1016/S0017-9310(01)00173-9.
[26] Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi. et al.(2007). Effects of toluene addition to primary reference fuel at high temperature. SAE Paper 2007-01-4104. DOI: 10.1016/S0017-9310(01)00173-9.
[27] S. Y. Mohamed, L. Cai, F. Khaled, C. Banyon. et al.(2016). Modeling ignition of a heptane isomer: improved thermodynamics, reaction pathways, kinetics, and rate rule optimizations for 2-methylhexane. The Journal of Physical Chemistry A.120(14):2201-2217. DOI: 10.1016/S0017-9310(01)00173-9.
[28] A. Roubaud, R. Minetti, L. R. Sochet. (2000). Oxidation and combustion of low alkylbenzenes at high pressure: Comparative reactivity and auto-ignition. Combustion and Flame.121(3):535-541. DOI: 10.1016/S0017-9310(01)00173-9.
[29] P. Dagaut, C. Togbé. (2008). Experimental and modeling study of the kinetics of oxidation of ethanol-gasoline surrogate mixtures (E85 surrogate) in a jet-stirred reactor. Energy & Fuels.22(5):3499-3505. DOI: 10.1016/S0017-9310(01)00173-9.
[30] J. C. G. Andrae, P. Björnbom, R. F. Cracknell, G. T. Kalghatgi. et al.(2007). Autoignition of toluene reference fuels at high pressures modeled with detailed chemical kinetics. Combustion and Flame.149(1-2):2-24. DOI: 10.1016/S0017-9310(01)00173-9.
[31] M. J. Al Rashidi, S. Thion, C. Togbé, G. Dayma. et al.(2017). Elucidating reactivity regimes in cyclopentane oxidation: Jet stirred reactor experiments, computational chemistry, and kinetic modeling. Proceedings of the Combustion Institute.36(1):469-477. DOI: 10.1016/S0017-9310(01)00173-9.
[32] C. Douté, J.-L. Delfau, C. Vovelle. (1997). Modeling of the structure of a premixed n-decane flame. Combustion Science and Technology.130(1-6):269-313. DOI: 10.1016/S0017-9310(01)00173-9.
[33] N. Atef, G. Kukkadapu, S. Y. Mohamed, M. A. Rashidi. et al.(2017). A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics. Combustion and Flame.178:111-134. DOI: 10.1016/S0017-9310(01)00173-9.
[34] G. Bikas. (2001). Kinetic Mechanism for Hydrocarbon Ignition [PhD Thesis]. DOI: 10.1016/S0017-9310(01)00173-9.
[35] O. Samimi Abianeh, C. P. Chen, S. Mahalingam. (2014). Numerical modeling of multi-component fuel spray evaporation process. International Journal of Heat and Mass Transfer.69:44-53. DOI: 10.1016/S0017-9310(01)00173-9.
[36] C. Olm, T. Varga, É. Valkó, S. Hartl. et al.Development of an ethanol combustion mechanism based on a hierarchical optimization approach. .48:423-441. DOI: 10.1016/S0017-9310(01)00173-9.
[37] C. Douté, J. L. Delfau, R. Akrich, C. Vovelle. et al.(1995). Chemical structure of atmospheric pressure premixed n-decane and kerosene flames. Combustion Science and Technology.106(4-6):327-344. DOI: 10.1016/S0017-9310(01)00173-9.
[38] W. J. Pitz, R. Seiser, J. W. Bozzelli. (2001). Chemical Kinetic Characterization of Combustion Toluene. DOI: 10.1016/S0017-9310(01)00173-9.
[39] M. J. Al Rashidi, M. Mehl, W. J. Pitz, S. Mohamed. et al.(2017). Cyclopentane combustion chemistry. Part I: Mechanism development and computational kinetics. Combustion and Flame.183:358-371. DOI: 10.1016/S0017-9310(01)00173-9.
[40] J.-J. Weng, Y.-X. Liu, B.-Y. Wang, L.-L. Xing. et al.(2017). Experimental and kinetic investigation of 1,2,4-trimethylbenzene oxidation at low temperature. Proceedings of the Combustion Institute.36(1):909-917. DOI: 10.1016/S0017-9310(01)00173-9.
[41] S. M. Burke, U. Burke, R. Mc Donagh, O. Mathieu. et al.(2015). An experimental and modeling study of propene oxidation. Part 2: Ignition delay time and flame speed measurements. Combustion and Flame.162(2):296-314. DOI: 10.1016/S0017-9310(01)00173-9.
[42] T. S. Norton, F. L. Dryer. (1992). An experimental and modeling study of ethanol oxidation kinetics in an atmospheric pressure flow reactor. International Journal of Chemical Kinetics.24(4):319-344. DOI: 10.1016/S0017-9310(01)00173-9.
[43] S. M. Burke, W. Metcalfe, O. Herbinet, F. Battin-Leclerc. et al.(2014). An experimental and modeling study of propene oxidation. Part 1: Speciation measurements in jet-stirred and flow reactors. Combustion and Flame.161(11):2765-2784. DOI: 10.1016/S0017-9310(01)00173-9.
[44] M. J. Al Rashidi, J. C. Mármol, C. Banyon, M. B. Sajid. et al.(2017). Cyclopentane combustion. Part II. Ignition delay measurements and mechanism validation. Combustion and Flame.183:372-385. DOI: 10.1016/S0017-9310(01)00173-9.
[45] M. Ribaucour, O. Lemaire, R. Minetti. (2002). Low-temperature oxidation and autoignition of cyclohexene: A modeling study. Proceedings of the Combustion Institute.29(1):1303-1309. DOI: 10.1016/S0017-9310(01)00173-9.
[46] A. Frassoldati, A. Cuoci, T. Faravelli, E. Ranzi. et al.(2010). Kinetic modeling of the oxidation of ethanol and gasoline surrogate mixtures. Combustion Science and Technology.182(7):653-667. DOI: 10.1016/S0017-9310(01)00173-9.
[47] J. Li, M. Chaos, A. Kazakov. (2009). Personal communication: Ethanol Model v1. 0. DOI: 10.1016/S0017-9310(01)00173-9.
[48] H.-P. S. Shen, J. Vanderover, M. A. Oehlschlaeger. (2009). A shock tube study of the auto-ignition of toluene/air mixtures at high pressures. Proceedings of the Combustion Institute.32:165-172. DOI: 10.1016/S0017-9310(01)00173-9.
[49] F. Yang, F. Deng, P. Zhang, E. Hu. et al.(2016). Comparative Study on Ignition Characteristics of 1-Hexene and 2-Hexene behind Reflected Shock Waves. Energy & Fuels.30(6):5130-5137. DOI: 10.1016/S0017-9310(01)00173-9.
[50] Y.-D. Liu, M. Jia, M.-Z. Xie, B. Pang. et al.(2013). Development of a new skeletal chemical kinetic model of toluene reference fuel with application to gasoline surrogate fuels for computational fluid dynamics engine simulation. Energy & Fuels.27(8):4899-4909. DOI: 10.1016/S0017-9310(01)00173-9.
[51] R. Minetti, A. Roubaud, E. Therssen, M. Ribaucour. et al.(1999). The chemistry of pre-ignition of n-pentane and 1-pentene. Combustion and Flame.118(1-2):213-220. DOI: 10.1016/S0017-9310(01)00173-9.
[52] W. G. Lovell. (Dec 1948). Knocking characteristics of hydrocarbons. Industrial & Engineering Chemistry.40(12):2388-2438. DOI: 10.1016/S0017-9310(01)00173-9.
[53] W. R. Leppard. (1989). A comparison of olefin and paraffin autoignition chemistries: a motored-engine study. SAE Paper 892081:879-904. DOI: 10.1016/S0017-9310(01)00173-9.
[54] O. Lemaire, M. Ribaucour, M. Carlier, R. Minetti. et al.(2001). The production of benzene in the low-temperature oxidation of cyclohexane, cyclohexene, and cyclohexa-1,3-diene. Combustion and Flame.127(1-2):1971-1980. DOI: 10.1016/S0017-9310(01)00173-9.
[55] D. F. Davidson, B. M. Gauthier, R. K. Hanson. (2005). Shock tube ignition measurements of iso-octane/air and toluene/air at high pressures. Proceedings of the Combustion Institute.30(1):1175-1182. DOI: 10.1016/S0017-9310(01)00173-9.
[56] H.-P. S. Shen, M. A. Oehlschlaeger. (2009). The autoignition of C8H10 aromatics at moderate temperatures and elevated pressures. Combustion and Flame.156(5):1053-1062. DOI: 10.1016/S0017-9310(01)00173-9.
[57] J. Li, A. Kazakov, M. Chaos. Chemical kinetics of ethanol oxidation. :25-28. DOI: 10.1016/S0017-9310(01)00173-9.
[58] E. J. Silke, W. J. Pitz, C. K. Westbrook, M. Ribaucour. et al.(2007). Detailed chemical kinetic modeling of cyclohexane oxidation. The Journal of Physical Chemistry A.111(19):3761-3775. DOI: 10.1016/S0017-9310(01)00173-9.
[59] G.-S. Zhu, R. D. Reitz. (2001). A model for high-pressure vaporization of droplets of complex liquid mixtures using continuous thermodynamics. International Journal of Heat and Mass Transfer.45(3):495-507. DOI: 10.1016/S0017-9310(01)00173-9.
[60] S. M. Handford-Styring, R. W. Walker. (2001). Arrhenius parameters for the reaction HO2 + cyclohexane between 673 and 773 K, and for H atom transfer in cyclohexylperoxy radicals. Physical Chemistry Chemical Physics.3(11):2043-2052. DOI: 10.1016/S0017-9310(01)00173-9.
[61] P. Saxena, F. A. Williams. (2007). Numerical and experimental studies of ethanol flames. Proceedings of the Combustion Institute.31:1149-1156. DOI: 10.1016/S0017-9310(01)00173-9.
[62] H. J. Curran, P. Gaffuri, W. J. Pitz, C. K. Westbrook. et al.(2002). A comprehensive modeling study of iso-octane oxidation. Combustion and Flame.129(3):253-280. DOI: 10.1016/S0017-9310(01)00173-9.
[63] G. Mittal, S. M. Burke, V. A. Davies, B. Parajuli. et al.(2014). Autoignition of ethanol in a rapid compression machine. Combustion and Flame.161(5):1164-1171. DOI: 10.1016/S0017-9310(01)00173-9.
[64] C. L. Barraza-Botet, S. W. Wagnon, M. S. Wooldridge. (2016). Combustion chemistry of ethanol: Ignition and speciation studies in a rapid compression facility. The Journal of Physical Chemistry A.120(38):7408-7418. DOI: 10.1016/S0017-9310(01)00173-9.
[65] DIADEM. (2008). DIPPR Information and Data Evaluation Manager, version 3.1.0. DOI: 10.1016/S0017-9310(01)00173-9.
[66] A. El Bakali, M. Braun-Unkhoff, P. Dagaut, P. Frank. et al.(2000). Detailed kinetic reaction mechanism for cyclohexane oxidation at pressure up to ten atmospheres. Proceedings of the Combustion Institute.28(2):1631-1637. DOI: 10.1016/S0017-9310(01)00173-9.
[67] A. Zyada, O. Samimi Abianeh. (2018). Ethanol kinetic model development and validation at wide range of mixture temperature, pressure and equivalence ratio, under-review. Fuel. DOI: 10.1016/S0017-9310(01)00173-9.
[68] P. Ghosh, K. J. Hickey, S. B. Jaffe. (2006). Development of a detailed gasoline composition-based octane model. Industrial & Engineering Chemistry Research.45(1):337-345. DOI: 10.1016/S0017-9310(01)00173-9.
[69] S. Ito. (2003). Analysis of aromatic hydrocarbons in gasoline and naphtha with the Agilent 6820 series gas chromatograph and a single polar capillary column. Agilent Technologies. DOI: 10.1016/S0017-9310(01)00173-9.
[70] G. Kukkadapu, K. Kumar, C.-J. Sung, M. Mehl. et al.(2012). Experimental and surrogate modeling study of gasoline ignition in a rapid compression machine. Combustion and Flame.159(10):3066-3078. DOI: 10.1016/S0017-9310(01)00173-9.
[71] J. R. Peterson. Alkylate is key for cleaner burning gasoline. National Meeting of the American Chemical Society (ACS). DOI: 10.1016/S0017-9310(01)00173-9.
[72] C. K. Westbrook, W. J. Pitz, H. C. Curran, J. Boercker. et al.(2001). Chemical kinetic modeling study of shock tube ignition of heptane isomers. International Journal of Chemical Kinetics.33(12):868-877. DOI: 10.1016/S0017-9310(01)00173-9.
[73] Z. Tian, W. J. Pitz, R. Fournet, P.-A. Glaude. et al.(2011). A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame. Proceedings of the Combustion Institute.33(1):233-241. DOI: 10.1016/S0017-9310(01)00173-9.
[74] M. Mehl, G. Vanhove, W. J. Pitz, E. Ranzi. et al.(2008). Oxidation and combustion of the n-hexene isomers: A wide range kinetic modeling study. Combustion and Flame.155(4):756-772. DOI: 10.1016/S0017-9310(01)00173-9.
[75] S. W. Wagnon, C. L. Barraza-Botet, M. S. Wooldridge. (2015). Effects of bond location on the ignition and reaction pathways of trans-hexene isomers. The Journal of Physical Chemistry A.119(28):7695-7703. DOI: 10.1016/S0017-9310(01)00173-9.
[76] D. Voisin, A. Marchal, M. Reuillon, J.-C. Boettner. et al.(1998). Experimental and Kinetic Modeling Study of Cyclohexane Oxidation in a JSR at High Pressure. Combustion Science and Technology.138(1-6):137-158. DOI: 10.1016/S0017-9310(01)00173-9.
[77] S. K. Gulati, R. W. Walker. (1989). Addition of cyclohexane to slowly reacting H2-O2 mixtures at 480°C. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics.85(11):1799-1812. DOI: 10.1016/S0017-9310(01)00173-9.
[78] V. Detilleux, J. Vandooren. (2011). Experimental and kinetic modeling investigation of toluene combustion in premixed, one-dimensional and laminar toluene-oxygen-argon flames. Proceedings of the Combustion Institute.33(1):217-224. DOI: 10.1016/S0017-9310(01)00173-9.
[79] Y. Zhang, K. P. Somers, M. Mehl, W. J. Pitz. et al.(2017). Probing the antagonistic effect of toluene as a component in surrogate fuel models at low temperatures and high pressures. A case study of toluene/dimethyl ether mixtures. Proceedings of the Combustion Institute.36(1):413-421. DOI: 10.1016/S0017-9310(01)00173-9.
[80] P. S. Veloo, Y. L. Wang, F. N. Egolfopoulos, C. K. Westbrook. et al.(2010). A comparative experimental and computational study of methanol, ethanol, and n-butanol flames. Combustion and Flame.157(10):1989-2004. DOI: 10.1016/S0017-9310(01)00173-9.
[81] K. Owen, T. Coley. (1995). Automotive Fuels Reference Book. DOI: 10.1016/S0017-9310(01)00173-9.
[82] Y. Sakai, A. Miyoshi, M. Koshi, W. J. Pitz. et al.(2009). A kinetic modeling study on the oxidation of primary reference fuel-toluene mixtures including cross reactions between aromatics and aliphatics. Proceedings of the Combustion Institute.32:411-418. DOI: 10.1016/S0017-9310(01)00173-9.
[83] C. Lee, S. Vranckx, K. A. Heufer, S. V. Khomik. et al.(2012). On the chemical kinetics of ethanol oxidation: shock tube, rapid compression machine and detailed modeling study. Journal of Research in Physical Chemistry.226(1):1-28. DOI: 10.1016/S0017-9310(01)00173-9.
[84] A. Ahmed, G. Goteng, V. S. B. Shankar, K. Al-Qurashi. et al.(2015). A computational methodology for formulating gasoline surrogate fuels with accurate physical and chemical kinetic properties. Fuel.143:290-300. DOI: 10.1016/S0017-9310(01)00173-9.
[85] J. M. Simmie. (2003). Detailed chemical kinetic models for the combustion of hydrocarbon fuels. Progress in Energy and Combustion Science.29(6):599-634. DOI: 10.1016/S0017-9310(01)00173-9.
[86] C. K. Westbrook, W. J. Pitz, O. Herbinet, H. J. Curran. et al.(2009). A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame.156(1):181-199. DOI: 10.1016/S0017-9310(01)00173-9.
[87] W. J. Pitz, C. V. Naik, T. Ní Mhaoldúin, C. K. Westbrook. et al.(2007). Modeling and experimental investigation of methylcyclohexane ignition in a rapid compression machine. Proceedings of the Combustion Institute.31:267-275. DOI: 10.1016/S0017-9310(01)00173-9.
[88] O. S. Abianeh, M. A. Oehlschlaeger, C.-J. Sung. (2015). A surrogate mixture and kinetic mechanism for emulating the evaporation and autoignition characteristics of gasoline fuel. Combustion and Flame.162(10):3773-3784. DOI: 10.1016/S0017-9310(01)00173-9.
[89] D. Kang, V. Kalaskar, D. Kim, J. Martz. et al.(2016). Experimental study of autoignition characteristics of Jet-A surrogates and their validation in a motored engine and a constant-volume combustion chamber. Fuel.184:565-580. DOI: 10.1016/S0017-9310(01)00173-9.
[90] W. J. Pitz, N. P. Cernansky, F. L. Dryer, F. N. Egolfopoulos. et al.(2007). Development of an experimental database and chemical kinetic models for surrogate gasoline fuels. SAE Paper 2007-01-0175. DOI: 10.1016/S0017-9310(01)00173-9.
[91] J. P. Orme, H. J. Curran, J. M. Simmie. Shock tube study of 5 membered cyclic hydrocarbon oxidation. . DOI: 10.1016/S0017-9310(01)00173-9.
[92] V. Simon, Y. Simon, G. Scacchi, F. Baronnet. et al.(1997). Étude expérimentale et modélisation des réactions d'oxydation du n-pentane et du cyclopentane. Canadian Journal of Chemistry.75(5):575-584. DOI: 10.1016/S0017-9310(01)00173-9.
[93] K. A. Heufer, Y. Uygun, H. Olivier. Experimental study of the high-pressure ignition of alcohol based biofuels. . DOI: 10.1016/S0017-9310(01)00173-9.
[94] L. Seidel, K. Moshammer, X. Wang, T. Zeuch. et al.(2015). Comprehensive kinetic modeling and experimental study of a fuel-rich, premixed n-heptane flame. Combustion and Flame.162(5):2045-2058. DOI: 10.1016/S0017-9310(01)00173-9.
[95] K. Zhang, C. Banyon, J. Bugler, H. J. Curran. et al.(2016). An updated experimental and kinetic modeling study of n-heptane oxidation. Combustion and Flame.172:116-135. DOI: 10.1016/S0017-9310(01)00173-9.
[96] K. A. Heufer, H. Olivier. (2010). Determination of ignition delay times of different hydrocarbons in a new high pressure shock tube. Shock Waves.20(4):307-316. DOI: 10.1016/S0017-9310(01)00173-9.
[97] L. R. Cancino, M. Fikri, A. M. M. Oliveira. Thermal oxidation of ethanol: experimental and numerical analysis of ignition chemistry of ethanol-air mixtures in shock-heated gases. . DOI: 10.1016/S0017-9310(01)00173-9.
[98] C. J. Mueller, W. J. Cannella, J. T. Bays. (2016). Diesel surrogate fuels for engine testing and chemical-kinetic modeling: Compositions and properties. Energy & Fuels.30(2):1445-1461. DOI: 10.1016/S0017-9310(01)00173-9.
[99] M. Pelucchi, M. Bissoli, C. Cavallotti. (2014). Improved kinetic model of the low-temperature oxidation of n-heptane. Energy and Fuels.28(11):7178-7193. DOI: 10.1016/S0017-9310(01)00173-9.
[100] C. V. Naik, W. J. Pitz, C. K. Westbrook, M. Sjöberg. et al.(2005). Detailed chemical kinetic modeling of surrogate fuels for gasoline and application to an HCCI engine. SAE Technical Paper 2005-01-3741. DOI: 10.1016/S0017-9310(01)00173-9.
[101] F. Yang, F. Deng, P. Zhang, Z. Tian. et al.(2016). Experimental and Kinetic Modeling Study on trans-3-Hexene Ignition behind Reflected Shock Waves. Energy & Fuels.30(1):706-716. DOI: 10.1016/S0017-9310(01)00173-9.
[102] S. Jerzembeck, N. Peters, P. Pepiot-Desjardins, H. Pitsch. et al.(2009). Laminar burning velocities at high pressure for primary reference fuels and gasoline: Experimental and numerical investigation. Combustion and Flame.156(2):292-301. DOI: 10.1016/S0017-9310(01)00173-9.
[103] M. Yahyaoui, N. Djebaïli-Chaumeix, C.-E. Paillard, S. Touchard. et al.(2005). Experimental and modeling study of 1-hexene oxidation behind reflected shock waves. Proceedings of the Combustion Institute.30(1):1137-1144. DOI: 10.1016/S0017-9310(01)00173-9.
[104] D. Kim, J. Martz, A. Violi. (2016). Effects of fuel physical properties on direct injection spray and ignition behavior. Fuel.180:481-496. DOI: 10.1016/S0017-9310(01)00173-9.
[105] M. Yahyaoui, N. Djebaïli-Chaumeix, P. Dagaut, C.-E. Paillard. et al.(2006). Kinetics of 1-hexene oxidation in a JSR and a shock tube: Experimental and modeling study. Combustion and Flame.147(1-2):67-78. DOI: 10.1016/S0017-9310(01)00173-9.
[106] D. Kim, J. Martz, A. Violi. (2014). A surrogate for emulating the physical and chemical properties of conventional jet fuel. Combustion and Flame.161(6):1489-1498. DOI: 10.1016/S0017-9310(01)00173-9.
[107] A. P. Zeelenberg, H. W. de Bruijn. (1965). Kinetics, mechanism and products of the gaseous oxidation of cyclohexane. Combustion and Flame.9(3):281-295. DOI: 10.1016/S0017-9310(01)00173-9.
[108] B. H. Bonner, C. F. H. Tipper. (1965). The cool flame combustion of hydrocarbons I-Cyclohexane. Combustion and Flame.9(3):317-327. DOI: 10.1016/S0017-9310(01)00173-9.
[109] T. J. Snee, J. F. Griffiths. (1989). Criteria for spontaneous ignition in exothermic, autocatalytic reactions: Chain branching and self-heating in the oxidation of cyclohexane in closed vessels. Combustion and Flame.75(3-4):381-395. DOI: 10.1016/S0017-9310(01)00173-9.
[110] P. Dagaut, J. Boettner, M. Cathonnet. (1992). Kinetic modeling of ethanol pyrolysis and combustion. Journal de Chimie Physique et de Physico-Chimie Biologique.89:867-884. DOI: 10.1016/S0017-9310(01)00173-9.
[111] F. N. Egolfopoulos, D. X. Du, C. K. Law. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. .24:833-841. DOI: 10.1016/S0017-9310(01)00173-9.
[112] F. L. Dryer. (2015). Chemical kinetic and combustion characteristics of transportation fuels. Proceedings of the Combustion Institute.35(1):117-144. DOI: 10.1016/S0017-9310(01)00173-9.
[113] R. Khan. Oxidation of Industry Standard Fuels and Blends of Primary Reference Fuels in the Low Temperature and Negative Temperature Coefficient Regions. . DOI: 10.1016/S0017-9310(01)00173-9.
[114] C. B. Reuter, M. Lee, S. H. Won, Y. Ju. et al.(2017). Study of the low-temperature reactivity of large n-alkanes through cool diffusion flame extinction. Combustion and Flame.179:23-32. DOI: 10.1016/S0017-9310(01)00173-9.
[115] M. P. Dunphy, J. M. Simmie. (1991). High-temperature oxidation of ethanol. Part 1. Ignition delays in shock waves. Journal of the Chemical Society, Faraday Transactions.87(11):1691-1696. DOI: 10.1016/S0017-9310(01)00173-9.
[116] M. Chaos, Z. Zhao, A. Kazakov. A PRF+ toluene surrogate fuel model for simulating gasoline kinetics. :25-28. DOI: 10.1016/S0017-9310(01)00173-9.
[117] S. Klaï, F. Baronnet. (1993). Étude de l'oxydation homogène du cyclohexane en phase gazeuse. II. Mécanisme réactionnel et modélisation. Journal de Chimie Physique et de Physico-Chimie Biologique.90:1951-1998. DOI: 10.1016/S0017-9310(01)00173-9.
[118] M. Mehl, J. Y. Chen, W. J. Pitz, S. M. Sarathy. et al.(2011). An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for CFD engine modeling. Energy & Fuels.25(11):5215-5223. DOI: 10.1016/S0017-9310(01)00173-9.
[119] C. J. Mueller, W. J. Cannella, T. J. Bruno, B. Bunting. et al.(2012). Methodology for formulating diesel surrogate fuels with accurate compositional, ignition-quality, and volatility characteristics. Energy & Fuels.26(6):3284-3303. DOI: 10.1016/S0017-9310(01)00173-9.
[120] K. Natarajan, K. A. Bhaskaran. An Experimental and Analytical Investigation of High Temperature Ignition of Ethanol. :834. DOI: 10.1016/S0017-9310(01)00173-9.
[121] S. Vranckx, C. Lee, H. K. Chakravarty, R. X. Fernandes. et al.(2013). A rapid compression machine study of the low temperature combustion of cyclohexane at elevated pressures. Proceedings of the Combustion Institute.34(1):377-384. DOI: 10.1016/S0017-9310(01)00173-9.
[122] Z. Wang, L. Zhao, Y. Wang, H. Bian. et al.(2015). Kinetics of ethylcyclohexane pyrolysis and oxidation: An experimental and detailed kinetic modeling study. Combustion and Flame.162(7):2873-2892. DOI: 10.1016/S0017-9310(01)00173-9.
[123] F. Billaud, P. Chaverot, M. Berthelin, E. Freund. et al.(1988). Thermal decomposition of cyclohexane at approximately 810°C. Industrial & Engineering Chemistry Research.27(5):759-764. DOI: 10.1016/S0017-9310(01)00173-9.
[124] R. J. Johnston, J. T. Farrell. (2005). Laminar burning velocities and Markstein lengths of aromatics at elevated temperature and pressure. Proceedings of the Combustion Institute.30(1):217-224. DOI: 10.1016/S0017-9310(01)00173-9.
[125] M. Mehl, H. J. Curran, W. J. Pitz. Chemical kinetic modeling of component mixtures relevant to gasoline. . DOI: 10.1016/S0017-9310(01)00173-9.
[126] K. Narayanaswamy, G. Blanquart, H. Pitsch. (2010). A consistent chemical mechanism for oxidation of substituted aromatic species. Combustion and Flame.157(10):1879-1898. DOI: 10.1016/S0017-9310(01)00173-9.
[127] M. Mehl, W. J. Pitz, M. Sjöberg, J. E. Dec. et al.(2009). Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine. SAE Technical Papers. DOI: 10.1016/S0017-9310(01)00173-9.
[128] P. A. Glaude, V. Warth, R. Fournet, F. Battin-Leclerc. et al.(1998). Modeling of the oxidation of n-octane and n-decane using an automatic generation of mechanisms. International Journal of Chemical Kinetics.30(12):949-959. DOI: 10.1016/S0017-9310(01)00173-9.
[129] N. M. Marinov. (1999). A detailed chemical kinetic model for high temperature ethanol oxidation. International Journal of Chemical Kinetics.31(2-3):183-220. DOI: 10.1016/S0017-9310(01)00173-9.
[130] J. Bugler, K. P. Somers, E. J. Silke, H. J. Curran. et al.(2015). Revisiting the kinetics and thermodynamics of the low-temperature oxidation pathways of alkanes: a case study of the three pentane isomers. The Journal of Physical Chemistry A.119(28):7510-7527. DOI: 10.1016/S0017-9310(01)00173-9.
[131] O. S. Abianeh, C. P. Chen, R. L. Cerro. (2012). Batch distillation: The forward and inverse problems. Industrial & Engineering Chemistry Research.51(38):12435-12448. DOI: 10.1016/S0017-9310(01)00173-9.
[132] G. Dayma, P. A. Glaude, R. Fournet, F. Battin-Leclerc. et al.(2003). Experimental and modeling study of the oxidation of cyclohexene. International Journal of Chemical Kinetics.35(7):273-285. DOI: 10.1016/S0017-9310(01)00173-9.
[133] M. L. Huber, E. W. Lemmon, T. J. Bruno. (2010). Surrogate mixture models for the thermophysical properties of aviation fuel Jet-A. Energy & Fuels.24(6):3565-3571. DOI: 10.1016/S0017-9310(01)00173-9.
[134] B. M. Gauthier, D. F. Davidson, R. K. Hanson. (2004). Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combustion and Flame.139(4):300-311. DOI: 10.1016/S0017-9310(01)00173-9.
[135] S. M. Daley, A. M. Berkowitz, M. A. Oehlschlaeger. (2008). A shock tube study of cyclopentane and cyclohexane ignition at elevated pressures. International Journal of Chemical Kinetics.40(10):624-634. DOI: 10.1016/S0017-9310(01)00173-9.
[136] J. L. Emdee, K. Brezinsky, I. Glassman. (1991). High-temperature oxidation mechanisms of m- and p-xylene. The Journal of Physical Chemistry.95(4):1626-1635. DOI: 10.1016/S0017-9310(01)00173-9.
[137] G. Vanhove, G. Petit, R. Minetti. (2006). Experimental study of the kinetic interactions in the low-temperature autoignition of hydrocarbon binary mixtures and a surrogate fuel. Combustion and Flame.145(3):521-532. DOI: 10.1016/S0017-9310(01)00173-9.
[138] B. Sirjean, F. Buda, H. Hakka, P. A. Glaude. et al.(2007). The autoignition of cyclopentane and cyclohexane in a shock tube. Proceedings of the Combustion Institute.31(1):277-284. DOI: 10.1016/S0017-9310(01)00173-9.
[139] S. Saxena, G. Flora, M. Kahandawala, S. Sidhu. et al.A shock tube experimental study and kinetic modeling of m-xylene ignition delay. :314. DOI: 10.1016/S0017-9310(01)00173-9.
[140] S. M. Sarathy, C. K. Westbrook, M. Mehl, W. J. Pitz. et al.(2011). Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combustion and Flame.158(12):2338-2357. DOI: 10.1016/S0017-9310(01)00173-9.
[141] L. Cai, H. Pitsch, S. Y. Mohamed, V. Raman. et al.(2016). Optimized reaction mechanism rate rules for ignition of normal alkanes. Combustion and Flame.173:468-482. DOI: 10.1016/S0017-9310(01)00173-9.
[142] S. Gudiyella, T. Malewicki, A. Comandini, K. Brezinsky. et al.(2011). High pressure study of m-xylene oxidation. Combustion and Flame.158(4):687-704. DOI: 10.1016/S0017-9310(01)00173-9.
文献评价指标
浏览 53次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次