首页 » 文章 » 文章详细信息
BioMed Research International Volume 2018 ,2018-12-06
Endophytic Fungus Aspergillus japonicus Mediates Host Plant Growth under Normal and Heat Stress Conditions
Research Article
Muhammad Hamayun 1 Anwar Hussain 1 Amjad Iqbal 2 Sumera Afzal Khan 3 In-Jung Lee 4
Show affiliations
DOI:10.1155/2018/7696831
Received 2018-06-22, accepted for publication 2018-10-24, Published 2018-10-24
PDF
摘要

We have isolated an endophytic fungus with heat stress alleviation potential from wild plant Euphorbia indica L. The phylogenetic analysis and 18S rDNA sequence homology revealed that the designated isolate was Aspergillus japonicus EuR-26. Analysis of A. japonicus culture filtrate displayed higher concentrations of salicylic acid (SA), indoleacetic acid (IAA), flavonoids, and phenolics. Furthermore, A. japonicus association with soybean and sunflower had improved plant biomass and other growth features under high temperature stress (40°C) in comparison to endophyte-free plants. In fact, endophytic association mitigated heat stress by negotiating the activities of abscisic acid, catalase, and ascorbic acid oxidase in both soybean and sunflower. The nutritional quality (phenolic, flavonoids, soluble sugars, proteins, and lipids) of the A. japonicus-associated seedlings has also improved under heat stress in comparison to endophyte-free plants. From the results, it is concluded that A. japonicus can modulate host plants growth under heat stress and can be used as thermal stress alleviator in arid and semiarid regions of the globe (where mean summer temperature exceeds 40°C) to sustain agriculture.

授权许可

Copyright © 2018 Ismail et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Phylogenetic consensus tree using neighbor joining (NJ) method for the identification of isolate EuR-26, using 14 taxa, 13 references, and 1 clone. The isolate was identified as Aspergillus japonicus as having 92% bootstrap value.

Analysis of secondary metabolites secreted by A. japonicus (EuR-26) in their culture filtrate (CF) grown for 7 days in Czapek medium in shaking incubator set at 120 rpm at 28°C. The bars labeled with different letters are significantly different at p < 0.05 as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Effect of A. japonicus on the concentration of (a) flavonoid, (b) phenolics, and (c) proline in soybean and sunflower seedlings grown at 25°C and 40°C. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Effect of A. japonicus on the concentration of (a) flavonoid, (b) phenolics, and (c) proline in soybean and sunflower seedlings grown at 25°C and 40°C. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Effect of A. japonicus on the concentration of (a) flavonoid, (b) phenolics, and (c) proline in soybean and sunflower seedlings grown at 25°C and 40°C. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Effect of A. japonicus on the concentration of (a) CAT and (b) AAO in soybean and sunflower seedlings grown at 25°C and 40°C. One enzyme unit was calculated as the amount of enzyme required to decrease the absorbance at 240 nm for CAT and 265 nm for AAO by 0.05 units. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of triplicate data (each replicate consisted of 9 seedlings).

Effect of A. japonicus on the concentration of (a) CAT and (b) AAO in soybean and sunflower seedlings grown at 25°C and 40°C. One enzyme unit was calculated as the amount of enzyme required to decrease the absorbance at 240 nm for CAT and 265 nm for AAO by 0.05 units. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of triplicate data (each replicate consisted of 9 seedlings).

GC MS quantification of endogenous ABA concentration in soybean and sunflower grown at 25°C and 40°C with and without A. japonicus. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Analysis of (a) soluble sugars, (b) proteins, and (c) lipids of soybean and sunflower seedlings grown at 25°C and 40°C with- and without-endophytic fungal strain A. japonicus. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Analysis of (a) soluble sugars, (b) proteins, and (c) lipids of soybean and sunflower seedlings grown at 25°C and 40°C with- and without-endophytic fungal strain A. japonicus. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

Analysis of (a) soluble sugars, (b) proteins, and (c) lipids of soybean and sunflower seedlings grown at 25°C and 40°C with- and without-endophytic fungal strain A. japonicus. For each set of treatment, the different letter indicates significant differences at p (< 0.05) as estimated by Tukey HSD test. The bars represent SE of a triplicate data (each replicate consisted of 9 seedlings).

通讯作者

1. Muhammad Hamayun.Department of Botany, Abdul Wali Khan University Mardan 23200, Pakistan.hamayun@awkum.edu.pk
2. Amjad Iqbal.Department of Agriculture, Abdul Wali Khan University Mardan 23200, Pakistan.amjadiqbal147@yahoo.com
3. In-Jung Lee.School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea, knu.ac.kr.ijlee@knu.ac.kr

推荐引用方式

Muhammad Hamayun,Anwar Hussain,Amjad Iqbal,Sumera Afzal Khan,In-Jung Lee. Endophytic Fungus Aspergillus japonicus Mediates Host Plant Growth under Normal and Heat Stress Conditions. BioMed Research International ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Hamayun, A. Hussain, S. A. Khan, M. Irshad. et al.(2015). Kinetin modulates physio-hormonal attributes and isoflavone contents of soybean grown under salinity stress. Frontiers in Plant Science.6:377. DOI: 10.1016/j.plantsci.2003.10.024.
[2] P. D. Hare, W. A. Cress, J. Van Staden. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell & Environment.21(6):535-553. DOI: 10.1016/j.plantsci.2003.10.024.
[3] C. Liu, T. Liu, F. Yuan, Y. Gu. et al.(2010). Isolating endophytic fungi from evergreen plants and determining their antifungal activities. African Journal of Microbiology Research.4(21):2243-2248. DOI: 10.1016/j.plantsci.2003.10.024.
[4] R. J. Rodriguez, J. F. White, A. E. Arnold, R. S. Redman. et al.(2009). Fungal endophytes: diversity and functional roles. New Phytologist.182(2):314-330. DOI: 10.1016/j.plantsci.2003.10.024.
[5] N. Misra, U. N. Dwivedi. (2004). Genotypic difference in salinity tolerance of green gram cultivars. Journal of Plant Sciences.166(5):1135-1142. DOI: 10.1016/j.plantsci.2003.10.024.
[6] H. Shao, Z. Liang, M. Shao. (2005). Changes of some anti-oxidative enzymes under soil water deficits among 10 wheat genotypes at tillering stage. Journal of the Science of Food and Agriculture.86. DOI: 10.1016/j.plantsci.2003.10.024.
[7] S. A. Khan, M. Hamayun, H.-Y. Kim, H.-J. Yoon. et al.(2009). A new strain of Arthrinium phaeospermum isolated from Carex kobomugi Ohwi is capable of gibberellin production. Biotechnology Letters.31(2):283-287. DOI: 10.1016/j.plantsci.2003.10.024.
[8] M. Waqas, A. L. Khan, M. Kamran, M. Hamayun. et al.(2012). Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules.17(9):10754-10773. DOI: 10.1016/j.plantsci.2003.10.024.
[9] S. Toh, A. Imamura, A. Watanabe, K. Nakabayashi. et al.(2008). High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiology.146(3):1368-1385. DOI: 10.1016/j.plantsci.2003.10.024.
[10] E. Benizri, A. Courtade, C. Picard, A. Guckert. et al.(1998). Role of maize root exudates in the production of auxins by M.3.1. Soil Biology & Biochemistry.30(10-11):1481-1484. DOI: 10.1016/j.plantsci.2003.10.024.
[11] A. S. Raghavendra, V. K. Gonugunta, A. Christmann, E. Grill. et al.(2010). ABA perception and signalling. Trends in Plant Science.15(7):395-401. DOI: 10.1016/j.plantsci.2003.10.024.
[12] A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko. et al.(2008). An update on abscisic acid signaling in plants and more ⋯. Molecular Plant.1(2):198-217. DOI: 10.1016/j.plantsci.2003.10.024.
[13] K. Shinozaki, K. Yamaguchi-Shinozaki. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany.58(2):221-227. DOI: 10.1016/j.plantsci.2003.10.024.
[14] R. Warrier, M. Paul, M. Vineetha. (2013). Estimation of salicylic acid in Eucalyptus leaves using spectrophotometric methods. Genetics and Plant Physiology.3(1-2):90-97. DOI: 10.1016/j.plantsci.2003.10.024.
[15] V. Chinnusamy, A. Jagendorf, J.-K. Zhu. (2005). Understanding and improving salt tolerance in plants. Crop Science.45(2):437-448. DOI: 10.1016/j.plantsci.2003.10.024.
[16] W. Claussen. (2005). Proline as a measure of stress in tomato plants. Journal of Plant Sciences.168(1):241-248. DOI: 10.1016/j.plantsci.2003.10.024.
[17] G. K. Agrawal, S. Tamogami, H. Iwahashi, V. P. Agrawal. et al.(2003). Transient regulation of jasmonic acid-inducible rice MAP kinase gene (OsBWMK1) by diverse biotic and abiotic stresses. Plant Physiology and Biochemistry.41(4):355-361. DOI: 10.1016/j.plantsci.2003.10.024.
[18] S. Caretto, V. Linsalata, G. Colella, G. Mita. et al.(2015). Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. International Journal of Molecular Sciences.16(11):26378-26394. DOI: 10.1016/j.plantsci.2003.10.024.
[19] C. Sun, J. M. Johnson, D. Cai, I. Sherameti. et al.(2010). confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. Journal of Plant Physiology.167(12):1009-1017. DOI: 10.1016/j.plantsci.2003.10.024.
[20] R. Nakabayashi, K. Saito. (2015). Integrated metabolomics for abiotic stress responses in plants. Current Opinion in Plant Biology.24:10-16. DOI: 10.1016/j.plantsci.2003.10.024.
[21] M. Iqbal, M. Ashraf. (2013). Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environmental and Experimental Botany.86:76-85. DOI: 10.1016/j.plantsci.2003.10.024.
[22] C. Mei, B. S. Flinn. (2010). The use of beneficial microbial endophytes for plant biomass and stress tolerance improvement. Recent Patents on Biotechnology.4(1):81-95. DOI: 10.1016/j.plantsci.2003.10.024.
[23] H. Luck. (1974). Methods in Enzymatic Analysis. DOI: 10.1016/j.plantsci.2003.10.024.
[24] V. Balbi, A. Devoto. (2008). Jasmonate signalling network in Arabidopsis thaliana: Crucial regulatory nodes and new physiological scenarios. New Phytologist.177(2):301-318. DOI: 10.1016/j.plantsci.2003.10.024.
[25] J. Y. Yoon, M. Hamayun, S.-K. Lee, I.-J. Lee. et al.(2009). Methyl jasmonate alleviated salinity stress in soybean. Journal of Crop Science and Biotechnology.12(2):63-68. DOI: 10.1016/j.plantsci.2003.10.024.
[26] R. J. Rodriguez, C. J. Woodward, R. S. Redman. (2012). Fungal influence on plant tolerance to stress. Biocomplexity of Plant-Fungal Interactions:155-163. DOI: 10.1016/j.plantsci.2003.10.024.
[27] O. Lorenzo, J. M. Chico, J. J. Sánchez-Serrano, R. Solano. et al.(2004). JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in arabidopsis. The Plant Cell.16(7):1938-1950. DOI: 10.1016/j.plantsci.2003.10.024.
[28] M. F. Oberbacher, H. M. Vines. (1963). Spectrophotometric assay of ascorbic acid oxidase. Nature.197(4873):1203-1204. DOI: 10.1016/j.plantsci.2003.10.024.
[29] V. Lattanzio, A. Cardinali, C. Ruta, I. M. Fortunato. et al.(2009). Relationship of secondary metabolism to growth in oregano ( L.) shoot cultures under nutritional stress. Environmental and Experimental Botany.65(1):54-62. DOI: 10.1016/j.plantsci.2003.10.024.
[30] Y. Cai, Q. Luo, M. Sun, H. Corke. et al.(2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences.74(17):2157-2184. DOI: 10.1016/j.plantsci.2003.10.024.
[31] P. D. Hare, W. A. Cress. (1997). Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation.21(2):79-102. DOI: 10.1016/j.plantsci.2003.10.024.
[32] M. Yang, M. Ma, M. Yuan, Z. Huang. et al.(2016). Fungal endophytes as a metabolic fine-tuning regulator for wine grape. PLoS ONE.11(9). DOI: 10.1016/j.plantsci.2003.10.024.
[33] V. Srinivas, D. Balasubramanian. (1995). Proline is a protein-compatible hydrotrope. Langmuir.11(7):2830-2833. DOI: 10.1016/j.plantsci.2003.10.024.
[34] L. S. Bates, R. P. Waldren, I. D. Teare. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil.39(1):205-207. DOI: 10.1016/j.plantsci.2003.10.024.
[35] M. M. M. El Far, H. A. A. Taie. (2009). Antioxidant activities, total anthocyanins, phenolics and flavonoids contents of some sweetpotato genotypes under stress of different concentrations of sucrose and sorbitol. Australian Journal of Basic and Applied Sciences.3(4):3609-3616. DOI: 10.1016/j.plantsci.2003.10.024.
[36] R. S. Redman, Y. O. Kim, C. J. Woodward, C. Greer. et al.(2011). Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change. PLoS ONE.6(7). DOI: 10.1016/j.plantsci.2003.10.024.
[37] A. L. Khan, M. Waqas, I.-J. Lee. (2015). Resilience of Penicillium resedanum LK6 and exogenous gibberellin in improving growth under abiotic stresses. Journal of Plant Research.128(2):259-268. DOI: 10.1016/j.plantsci.2003.10.024.
[38] K. Azad, S. Kaminskyj. (2016). A fungal endophyte strategy for mitigating the effect of salt and drought stress on plant growth. Symbiosis.68(1–3):73-78. DOI: 10.1016/j.plantsci.2003.10.024.
[39] M. Ashraf, P. J. C. Harris. (2004). Potential biochemical indicators of salinity tolerance in plants. Journal of Plant Sciences.166(1):3-16. DOI: 10.1016/j.plantsci.2003.10.024.
[40] E. H. Alici, G. Arabaci. (2016). Determination of SOD, POD, PPO and cat enzyme activities in Rumex obtusifolius L. Annual Research & Review in Biology.11(3):1-7. DOI: 10.1016/j.plantsci.2003.10.024.
[41] F. Waller, B. Achatz, H. Baltruschat, J. Fodor. et al.(2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Acadamy of Sciences of the United States of America.102(38):13386-13391. DOI: 10.1016/j.plantsci.2003.10.024.
[42] A. Hussain, S. T. Shah, H. Rahman, M. Irshad. et al.(2015). Effect of IAA on in vitro growth and colonization of Nostoc in plant roots. Frontiers in Plant Science.6. DOI: 10.1016/j.plantsci.2003.10.024.
[43] L. J. Quan, B. Zhang, W. W. Shi, H. Y. Li. et al.(2008). Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. Journal of Integrative Plant Biology.50(1):2-18. DOI: 10.1016/j.plantsci.2003.10.024.
[44] P. B. Kavi Kishor, S. Sangam, R. N. Amrutha, P. Sri Laxmi. et al.(2005). Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Current Science.88(3):424-438. DOI: 10.1016/j.plantsci.2003.10.024.
[45] E. Van Handel. (1985). Rapid determination of glycogen and sugars in mosquitoes. Journal of the American Mosquito Control Association.1(3):299-301. DOI: 10.1016/j.plantsci.2003.10.024.
[46] A. Mhamdi, G. Queval, S. Chaouch, S. Vanderauwera. et al.(2010). Catalase function in plants: a focus on mutants as stress-mimic models. Journal of Experimental Botany.61(15):4197-4220. DOI: 10.1016/j.plantsci.2003.10.024.
[47] N. Mohammadkhani, R. Heidari. (2008). Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Applied Sciences Journal.3(3):448-453. DOI: 10.1016/j.plantsci.2003.10.024.
[48] K. Saikkonen, S. Saari, M. Helander. (2010). Defensive mutualism between plants and endophytic fungi?. Fungal Diversity.41:101-113. DOI: 10.1016/j.plantsci.2003.10.024.
[49] O. H. Lowry, N. J. Rosebrough, A. L. Farr, R. J. Randall. et al.(1951). Protein measurement with the Folin phenol reagent. The Journal of Biological Chemistry.193(1):265-275. DOI: 10.1016/j.plantsci.2003.10.024.
[50] X. Sun, L.-D. Guo, K. D. Hyde. (2011). Community composition of endophytic fungi in and their role in decomposition. Fungal Diversity.47:85-95. DOI: 10.1016/j.plantsci.2003.10.024.
[51] S. A. Khan, M. Hamayun, H. Yoon, H.-Y. Kim. et al.(2008). Plant growth promotion and. BMC Microbiology.8. DOI: 10.1016/j.plantsci.2003.10.024.
[52] M. Hamayun, A. Hussain, S. A. Khan, H.-Y. Kim. et al.(2017). Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Frontiers in Microbiology.8. DOI: 10.1016/j.plantsci.2003.10.024.
[53] L. Bilal, S. Asaf, M. Hamayun, H. Gul. et al.(2018). Plant growth promoting endophytic fungi TS1 and BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis:1-11. DOI: 10.1016/j.plantsci.2003.10.024.
[54] E. H. Clifton, S. T. Jaronski, B. S. Coates, E. W. Hodgson. et al.(2018). Effects of endophytic entomopathogenic fungi on soybean aphid and identification of Metarhizium isolates from agricultural fields. PLoS ONE.13(3). DOI: 10.1016/j.plantsci.2003.10.024.
[55] Y. Su, J. Guo, H. Ling, S. Chen. et al.(2014). Isolation of a novel peroxisomal catalase gene from sugarcane, which is responsive to biotic and abiotic stresses. PLoS ONE.9(1). DOI: 10.1016/j.plantsci.2003.10.024.
[56] J. Zhao, L. Zhou, J. Wang, T. Shan. et al.(2010). Endophytic fungi for producing bioactive compounds originally from their host plants. Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology.1:567-576. DOI: 10.1016/j.plantsci.2003.10.024.
[57] P. L. Conklin. (2001). Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant, Cell & Environment.24(4):383-394. DOI: 10.1016/j.plantsci.2003.10.024.
文献评价指标
浏览 34次
下载全文 12次
评分次数 0次
用户评分 0.0分
分享 0次