首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2018 ,2018-12-02
A Nonlinear Strength Criterion for Frozen Sulfate Saline Silty Clay with Different Salt Contents
Research Article
Yanhu Zhao 1 , 2 Yuanming Lai 1 , 2 Jing Zhang 1 , 2 Chong Wang 3
Show affiliations
DOI:10.1155/2018/3763569
Received 2018-08-21, accepted for publication 2018-11-05, Published 2018-11-05
PDF
摘要

It has been proven that the mechanical properties of frozen saline soils are different from frozen soils and unfrozen saline soils. In this paper, in order to study the effects of the salt contents on the strength characteristics of frozen soils, a series of conventional triaxial compression tests are carried out for frozen saline silty clay with Na2SO4 contents 0.0, 0.5, 1.5, and 2.5% under confining pressures from 0 MPa to 18 MPa at −6°C, respectively. The experimental results show that the strength of frozen saline silty clay presents obvious nonlinearity, the strength of frozen saline silty clay increases with increasing confining pressures at first, but with a further increase in confining pressures, the strength decreases because of pressure melting and crushing phenomena under high confining pressures, and salt contents have an important influence on strength of frozen saline silty clay. A strength criterion is proposed on the basis of the experimental results. The strength criterion could well reflect the nonlinear strength characteristic of frozen saline silty clay and the influence of salt contents on frozen saline silty clay.

授权许可

Copyright © 2018 Yanhu Zhao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The typical stress-strain curves of frozen saline silty clay with salt content 1.5%.

The typical stress-strain curves of frozen saline silty clay with salt content 1.5%.

The typical stress-strain curves of frozen saline silty clay with different salt contents under a confining pressure of 8 MPa.

Test values and fitting curves of CSL with different salt contents.

Relationship between hydrostatic pressure and friction angle of frozen saline silty clay with different salt contents.

The shear strength envelope of frozen saline silty clay.

The failure surface and the shape function curves for frozen saline silty clay with salt content 1.5%: (a) principal stress space; (b) π plane.

The failure surface and the shape function curves for frozen saline silty clay with salt content 1.5%: (a) principal stress space; (b) π plane.

The shape function curves in the π plane with different salt contents: (a) p=8  MPa; (b) p=10  MPa.

The shape function curves in the π plane with different salt contents: (a) p=8  MPa; (b) p=10  MPa.

通讯作者

Yuanming Lai.State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China, cas.cn;University of Chinese Academy of Sciences, Beijing 100049, China, ucas.ac.cn.ymlai@lzb.ac.cn

推荐引用方式

Yanhu Zhao,Yuanming Lai,Jing Zhang,Chong Wang. A Nonlinear Strength Criterion for Frozen Sulfate Saline Silty Clay with Different Salt Contents. Advances in Materials Science and Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. P. Yao, W. Hou, A. N. Zhou. (2009). UH model: three-dimensional unified hardening model for overconsolidated clays. Geotechnique.59(5):451-469. DOI: 10.2208/jscej1969.1974.232_59.
[2] J. L. Qi, W. Ma. (2007). A new criterion for strength of frozen sand under quick triaxial compression considering effect of confining pressure. Acta Geotechnica.2(3):221-226. DOI: 10.2208/jscej1969.1974.232_59.
[3] N. A. Tsytovich. (1985). The Mechanics of Frozen Ground. DOI: 10.2208/jscej1969.1974.232_59.
[4] E. Chamberlain, C. Groves, R. Perham. (1972). The mechanical behaviour of frozen earth materials under high pressure triaxial test conditions. Géotechnique.22(3):469-483. DOI: 10.2208/jscej1969.1974.232_59.
[5] J. M. Pestana, A. J. Whittle, L. A. Salvati. (2002). Evaluation of a constitutive model for clays and sands: Part I-sand behavior. International Journal Numerical and Analytical Methods in Geomechanics.26(11):1097-1121. DOI: 10.2208/jscej1969.1974.232_59.
[6] A. Gajo, D. Muir Wood. (1999). A kinematic hardening constitutive model for sands: the multiaxial formulation. International Journal Numerical and Analytical Methods in Geomechanics.23(9):925-965. DOI: 10.2208/jscej1969.1974.232_59.
[7] People’s Republic of China National Standard GB/T 50123-1999. (1999). Standard for Soil Test Method. DOI: 10.2208/jscej1969.1974.232_59.
[8] D. Y. Wang, W. Ma, X. X. Chang, A. G. Wang. et al.(2005). Study on the resistance to deformation of artificially frozen soil in deep alluvium. Cold Regions Science and Technology.42(3):194-200. DOI: 10.2208/jscej1969.1974.232_59.
[9] S. S. Vialov. (1981). Determination of Strength and Creep for Artificially Frozen Soils. DOI: 10.2208/jscej1969.1974.232_59.
[10] X. S. Wan. (2015). Laboratory investigation on salt crystals precipitation of sulfate saline soil and salt transfer and salt-heaving mitigation of embankment in cold regions. . DOI: 10.2208/jscej1969.1974.232_59.
[11] T. H. W. Baker, S. J. Jones, V. R. Parameswaran. Confined and unconfined compression tests of frozen sand. :387-392. DOI: 10.2208/jscej1969.1974.232_59.
[12] W. Ma, X. X. Chang. (2002). Analyses of strength and deformation of an artificially frozen soil wall in underground engineering. Cold Regions Science and Technology.34(1):11-17. DOI: 10.2208/jscej1969.1974.232_59.
[13] V. R. Parameswaran, S. J. Jones. (1981). Triaxial testing of frozen sand. Journal of Glaciology.27(95):147-155. DOI: 10.2208/jscej1969.1974.232_59.
[14] W. Ma, Z. W. Wu, L. X. Zhang, X. X. Chang. et al.(1999). Analyses of process on the strength decrease in frozen soils under high confining pressure. Cold Regions Science and Technology.29(1):1-7. DOI: 10.2208/jscej1969.1974.232_59.
[15] A. M. Fish. Strength of frozen soil under a combined stress state. .1:135-145. DOI: 10.2208/jscej1969.1974.232_59.
[16] M. K. Liao, Y. M. Lai, C. Wang. (2016). A strength criterion for frozen sodium sulfate saline soil. Canadian Geotechnical Journal.53(7):1176-1185. DOI: 10.2208/jscej1969.1974.232_59.
[17] W. Ma, Z. Wu, X. X. Chang. (1995). Effect of confining pressure on strength behaviour of frozen soil. Chinese Journal of Geotechnical Engineering.17(5):7-11. DOI: 10.2208/jscej1969.1974.232_59.
[18] P. V. Lade, J. M. Duncan. (1975). Elasto-plastic stressstrain theory for cohesionless soil. Journal of the Geotechnical Engineering Division.101(10):1037-1053. DOI: 10.2208/jscej1969.1974.232_59.
[19] Y. M. Lai, H. B. Cheng, Z. H. Gao, X. X. Chang. et al.(2007). Stress–strain relationships and nonlinear Mohr strength criterion of frozen sand clay. Chinese Journal of Rock Mechanics and Engineering.26(8):1612-1617. DOI: 10.2208/jscej1969.1974.232_59.
[20] H. Matsuoka, T. Nakai. (1974). Stressdeformation and strength characteristics of soil under three different principal stresses. Proceedings of the Japanese Society of Civil Engineers.1974(232):59-70. DOI: 10.2208/jscej1969.1974.232_59.
[21] X. Z. Xu, J. C. Wang, L. X. Zhang, Z. X. Tao. et al.(1995). Mechanisms of Frost Heave and Soil Expansion of Soils. DOI: 10.2208/jscej1969.1974.232_59.
[22] J. M. Ting, R. T. Martin, C. C. Ladd. (1983). Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering.109(10):1286-1302. DOI: 10.2208/jscej1969.1974.232_59.
[23] Y. L. Zhu, D. L. Carbee. (1987). Creep and Strength Behaviour of Frozen Silt in Uniaxial Compression. DOI: 10.2208/jscej1969.1974.232_59.
[24] Y. G. Yang, F. Gao, Y. M. Lai. (2013). Modified Hoek-Brown criterion for nonlinear strength of frozen soil. Cold Regions Science and Technology.86:98-103. DOI: 10.2208/jscej1969.1974.232_59.
[25] O. B. Andersland, I. Ainouri. (1970). Time-dependent strength behavior of frozen soils. Journal of the Soil Mechanics and Foundation Division.96(4):1249-1265. DOI: 10.2208/jscej1969.1974.232_59.
[26] Y. G. Yang, Y. M. Lai, Y. H. Dong, S. Y. Li. et al.(2010). The strength criterion and elastoplastic constitutive model of frozen soil under high confining pressures. Cold Regions Science and Technology.60(2):154-160. DOI: 10.2208/jscej1969.1974.232_59.
[27] Y. P. Yao, J. Hu, A. N. Zhou, T. Luo. et al.(2015). Unified strength criterion for soils, gravels, rocks, and concretes. Acta Geotechnica.10(6):749-759. DOI: 10.2208/jscej1969.1974.232_59.
[28] J. Chu. (1995). An experimental examination of the critical state and other similar concepts for granular soils. Canadian Geotechnical Journal.32(6):1065-1075. DOI: 10.2208/jscej1969.1974.232_59.
[29] Y. G. Yang, Y. M. Lai, J. B. Li. (2010). Laboratory investigation on the strength characteristic of frozen sand considering effect of confining pressure. Cold Regions Science and Technology.60(3):245-250. DOI: 10.2208/jscej1969.1974.232_59.
[30] B. D. Alkire, O. B. Andersland. (1973). The effect of confining pressure on the mechanical properties of sand-ice materials. Journal of Glaciology.12(66):469-481. DOI: 10.2208/jscej1969.1974.232_59.
[31] Y. L. Zhu, D. L. Carbee. (1987). Uniaxial compressive strength of frozen silt under constant deformation rates. Cold Regions Science and Technology.9(1):3-5. DOI: 10.2208/jscej1969.1974.232_59.
[32] H. Matsuoka, Y. P. Yao, D. Sun. (1999). The cam-clay models revised by the SMP criterion. Soils and Foundations.39(1):81-95. DOI: 10.2208/jscej1969.1974.232_59.
[33] F. D. Haynes, J. A. Karalius. (1977). Effect of Temperature on the Strength of Frozen Silt. DOI: 10.2208/jscej1969.1974.232_59.
[34] Y. M. Lai, L. Jin, X. X. Chang. (2009). Yield criterion and elasto-plastic damage constitutive model for frozen sandy soil. International Journal of Plasticity.25(6):1177-1205. DOI: 10.2208/jscej1969.1974.232_59.
[35] Y. M. Lai, Y. G. Yang, X. X. Chang, S. Y. Li. et al.(2010). Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics. International Journal of Plasticity.26(10):1461-1484. DOI: 10.2208/jscej1969.1974.232_59.
[36] I. E. Guryanov, W. Ma. (1995). Strength characteristics of frozen soil under loading and unloading. Journal of Glaciology and Geocryology.18(1):53-57. DOI: 10.2208/jscej1969.1974.232_59.
文献评价指标
浏览 12次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次