首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2018 ,2018-12-04
Spatial Distribution and Temporal Trend of Tropospheric NO2 over the Wanjiang City Belt of China
Research Article
Yu Xie 1 Wei Wang 2 Qinglong Wang 1
Show affiliations
DOI:10.1155/2018/6597186
Received 2018-05-15, accepted for publication 2018-09-26, Published 2018-09-26
PDF
摘要

We utilize the tropospheric NO2 columns derived from the observations of Ozone Monitoring Instrument (OMI) onboard AURA to analyze the spatial distributions and temporal trends of NO2 in Wanjiang City Belt (WCB) of China from 2005 to 2016. The aim of this study is to assess the effect of industrial transfer policy on the air quality in WCB. Firstly, we used the surface in situ NO2 concentrations to compare with the OMI-retrieved tropospheric NO2 columns in order to verify the accuracy of the satellite data over the WCB area. Although it is difficult to compare the two datasets directly, the comparison results prove the accuracy of the OMI-retrieved tropospheric NO2 columns in cities of WCB. Then, the spatial distributions of the annual averaged tropospheric NO2 total columns over Anhui Province show that NO2 columns were considerably higher in WCB than those in other areas of Anhui. Also, we compared the spatial distributions of the total NO2 columns in 2005 through 2010 and in 2011 through 2016 and found that the total NO2 columns in WCB increased by 19.9%, while the corresponding value increased only 13.9% in other Anhui areas except the WCB area. Furthermore, the temporal variations of NO2 columns show that although the NO2 columns over WCB and Anhui increased significantly from 2005 to 2011, they decreased sharply from 2011 to 2016 due to the strict emission reduction measures in China. Finally, the HYSPLIT model was used to analyze the origins of NO2 and transport pathways of air masses in a typical city, Ma’anshan city.

授权许可

Copyright © 2018 Yu Xie et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The location of (a) Anhui Province and (b) Wanjiang City Belt (WCB).

Digital elevation model (DEM) of Anhui (m).

Distribution of CNEMC stations in Anhui.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Comparison of OMI-retrieved tropospheric NO2 columns and surface in situ concentrations for eight WCB cities: (a) Hefei; (b) Wuhu; (c) Ma’anshan; (d) Chuzhou; (e) Chizhou; (f) Anqing; (g) Tongling; (h) Xuancheng.

Annual averaged OMI-retrieved NO2 columns (×1013 molec./cm2) from 2005 to 2016 in Anhui Province.

Annual averaged OMI-retrieved NO2 columns (×1013 molec./cm2) from 2005 to 2016 of cities in Anhui Province.

Total of OMI-retrieved vertical column densities (×1015 molec./cm2) of NO2 in Anhui. (a) Total of NO2 vertical column densities from 2005 to 2010. (b) Total of NO2 vertical column densities from 2011 to 2016. (c) Difference in the total of NO2 vertical column densities between the two periods. The positive values indicate an increasing trend of NO2 vertical column densities from 2005 to 2016, and vice versa.

Total of OMI-retrieved vertical column densities (×1015 molec./cm2) of NO2 in Anhui. (a) Total of NO2 vertical column densities from 2005 to 2010. (b) Total of NO2 vertical column densities from 2011 to 2016. (c) Difference in the total of NO2 vertical column densities between the two periods. The positive values indicate an increasing trend of NO2 vertical column densities from 2005 to 2016, and vice versa.

Total of OMI-retrieved vertical column densities (×1015 molec./cm2) of NO2 in Anhui. (a) Total of NO2 vertical column densities from 2005 to 2010. (b) Total of NO2 vertical column densities from 2011 to 2016. (c) Difference in the total of NO2 vertical column densities between the two periods. The positive values indicate an increasing trend of NO2 vertical column densities from 2005 to 2016, and vice versa.

Fractions of OMI-derived tropospheric NO2 columns over WCB in the total tropospheric NO2 columns of Anhui from 2005 to 2016. Fraction of tropospheric NO2 columns is calculated as the ratio of the sum of annual averaged tropospheric NO2 columns in WCB to the sum of annual averaged tropospheric NO2 columns in Anhui from 2005 to 2016 (%).

Average tropospheric NO2 columns from 2005 to 2016 in Anhui and WCB.

Average tropospheric NO2 columns for four seasons from 2005 to 2016 in WCB.

The average tropospheric NO2 columns of cities in Anhui from 2005 to 2016.

The cluster of air mass backward trajectories in different seasons in Ma’anshan based on the HYSPLIT model: (a) spring; (b) summer; (c) autumn; (d) winter. The black triangle represents the location of Ma’anshan.

The cluster of air mass backward trajectories in different seasons in Ma’anshan based on the HYSPLIT model: (a) spring; (b) summer; (c) autumn; (d) winter. The black triangle represents the location of Ma’anshan.

The cluster of air mass backward trajectories in different seasons in Ma’anshan based on the HYSPLIT model: (a) spring; (b) summer; (c) autumn; (d) winter. The black triangle represents the location of Ma’anshan.

The cluster of air mass backward trajectories in different seasons in Ma’anshan based on the HYSPLIT model: (a) spring; (b) summer; (c) autumn; (d) winter. The black triangle represents the location of Ma’anshan.

通讯作者

Wei Wang.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, Anhui, China, cas.cn.wwang@aiofm.ac.cn

推荐引用方式

Yu Xie,Wei Wang,Qinglong Wang. Spatial Distribution and Temporal Trend of Tropospheric NO2 over the Wanjiang City Belt of China. Advances in Meteorology ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Z. Ma, S. Beirle, J. L. Jin, R. Shaiganfar. et al.(2013). Tropospheric NO vertical column densities over Beijing: results of the first three years of ground-based MAX-DOAS measurements (2008–2011) and satellite validation. Atmospheric Chemistry and Physics.13(3):1547-1567. DOI: 10.5194/acp-16-4605-2016.
[2] F. Liu, S. Beirle, Q. Zhang. (2017). NO emission trends over Chinese cities estimated from OMI observations during 2005 to 2015. Atmospheric Chemistry and Physics.17(15):9261-9275. DOI: 10.5194/acp-16-4605-2016.
[3] J. Gu, L. Chen, C. Yu. (2017). Ground-level NO concentrations over China inferred from the satellite OMI and CMAQ model simulations. Remote Sensing.9(6):519. DOI: 10.5194/acp-16-4605-2016.
[4] J. Huang, C. Zhou, X. Lee. (2013). The effects of rapid urbanization on the levels in tropospheric nitrogen dioxide and ozone over east China. Atmospheric Environment.77:558-567. DOI: 10.5194/acp-16-4605-2016.
[5] J. T. Lin. (2012). Satellite constraint for emissions of nitrogen oxides from anthropogenic, lightning and soil sources over east China on a high-resolution grid. Atmospheric Chemistry and Physics.12(6):2881-2898. DOI: 10.5194/acp-16-4605-2016.
[6] D. J. Jacob, E. G. Heikes, S. M. Fan. (1996). Origin of ozone and NO in the tropical troposphere: a photochemical analysis of aircraft observations over the south Atlantic basin. Journal of Geophysical Research: Atmospheres.101(19):24235-24250. DOI: 10.5194/acp-16-4605-2016.
[7] (2018). Air Pollution Prevention and Control Action Plan. DOI: 10.5194/acp-16-4605-2016.
[8] Z. Ul-Haq, A. D. Rana, S. Tariq, K. Mahmood. et al.(2018). Modeling of tropospheric NO column over different climatic zones and land use/land cover types in South Asia. Journal of Atmospheric and Solar-Terrestrial Physics.168:80-99. DOI: 10.5194/acp-16-4605-2016.
[9] L. N. Lamsal, R. V. Martin, A. Van Donkelaar. (2008). Ground-level nitrogen dioxide concentrations inferred from the satellite-borne ozone monitoring instrument. Journal of Geophysical Research.113(16). DOI: 10.5194/acp-16-4605-2016.
[10] N. Blond, K. F. Boersma, H. J. Eskes. (2007). Intercomparison of sciamachy nitrogen dioxide observations, in situ measurements and air quality modeling results over western Europe. Journal of Geophysical Research: Atmospheres.112(10). DOI: 10.5194/acp-16-4605-2016.
[11] Z. Ling, T. Huang, Y. Zhao. (2017). OMI-measured increasing SO emissions due to energy industry expansion and relocation in northwestern China. Atmospheric Chemistry and Physics.17(14):9115-9131. DOI: 10.5194/acp-16-4605-2016.
[12] C. Ordóñez, A. Richter, M. Steinbacher. (2006). Comparison of 7 years of satellite-borne and ground-based tropospheric NO measurements around Milan, Italy. Journal of Geophysical Research.111(5). DOI: 10.5194/acp-16-4605-2016.
[13] I. Ialongo, J. Herman, N. Krotkov. (2016). Comparison of OMI NO observations and their seasonal and weekly cycles with ground-based measurements in Helsinki. Atmospheric Measurement Techniques.9(10):5203-5212. DOI: 10.5194/acp-16-4605-2016.
[14] K. Y. Kondratyev, C. A. Varotsos. (2001). Global tropospheric ozone dynamics. Environmental Science and Pollution Research International.8(2):113-119. DOI: 10.5194/acp-16-4605-2016.
[15] H. Liu, C. Liu, Z. Xie. (2016). A paradox for air pollution controlling in China revealed by “APEC blue” and “PARADE blue”. Scientific Reports.6(1):34408. DOI: 10.5194/acp-16-4605-2016.
[16] T. N. Knepp, R. Querel, P. Johnston, L. Thomason. et al.(2017). Intercomparison of pandora stratospheric NO slant column product with the NDACC-certified M07 spectrometer in Lauder, New Zealand. Atmospheric Measurement Techniques.10:4363-4372. DOI: 10.5194/acp-16-4605-2016.
[17] Z. Xiao, H. Jiang, X. Song, X. Zhang. et al.(2013). Monitoring of atmospheric nitrogen dioxide using ozone monitoring instrument remote sensing data. Journal of Applied Remote Sensing.7(1). DOI: 10.5194/acp-16-4605-2016.
[18] K. Xiao, Y. Wang, G. Wu, B. Fu. et al.(2018). Spatiotemporal characteristics of air pollutants (PM10, PM2.5, SO, NO, O, and CO) in the inland basin city of Chengdu, southwest China. Atmosphere.9(2):74. DOI: 10.5194/acp-16-4605-2016.
[19] F. Liu, Q. Zhang, D. A. Van. (2016). Recent reduction in NO emissions over China: synthesis of satellite observations and emission inventories. Environmental Research Letters.11(11). DOI: 10.5194/acp-16-4605-2016.
[20] B. Liu, S.-J. Lee, Z. Jiao, L. Wang. et al.(2012). Contemporary Logistics in China: An Introduction. DOI: 10.5194/acp-16-4605-2016.
[21] F. Liu, S. Beirle, Q. Zhang, S. Dörner. et al.(2016). NO lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmospheric Chemistry and Physics.16(8):5283-5298. DOI: 10.5194/acp-16-4605-2016.
[22] T. Drosoglou, M. E. Koukouli, N. Kouremeti. (2018). MAX-DOAS NO observations over Guangzhou, China; ground-based and satellite comparisons. Atmospheric Measurement Techniques.11(4):2239-2255. DOI: 10.5194/acp-16-4605-2016.
[23] S. Tang. (2011). Wanjiang city belt in the making. China Today.2011:40-43. DOI: 10.5194/acp-16-4605-2016.
[24] P. F. Levelt, G. H. J. V. D. Oord, M. R. Dobber. (2006). The ozone monitoring instrument. IEEE Transactions on Geoscience and Remote Sensing.44(5):1093-1101. DOI: 10.5194/acp-16-4605-2016.
[25] A. F. Stein, R. R. Draxler, G. D. Rolph, B. J. B. Stunder. et al.(2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society.96(12):2059-2077. DOI: 10.5194/acp-16-4605-2016.
[26] . DOI: 10.5194/acp-16-4605-2016.
[27] K. M. Han, S. Lee, L. S. Chang, C. H. Song. et al.(2015). A comparison study between CMAQ-simulated and OMI-retrieved NO columns over east asia for evaluation of NO emission fluxes of INTEX-B, CAPSS, and REAS inventories. Atmospheric Chemistry and Physics.15(4):1913-1938. DOI: 10.5194/acp-16-4605-2016.
[28] D. Kim, H. Lee, H. Hong, W. Choi. et al.(2017). Estimation of surface NO volume mixing ratio in four metropolitan cities in Korea using multiple regression models with OMI and airs data. Remote Sensing.9(6):627. DOI: 10.5194/acp-16-4605-2016.
[29] C. A. Varotsos, J. M. Ondov, M. N. Efstathiou, A. P. Cracknell. et al.(2014). The local and regional atmospheric oxidants at Athens (Greece). Environmental Science and Pollution Research.21(6):4430-4440. DOI: 10.5194/acp-16-4605-2016.
[30] N. A. Krotkov, C. A. McLinden, C. Li. (2016). Aura OMI observations of regional SO and NO pollution changes from 2005 to 2015. Atmospheric Chemistry and Physics.16(7):4605-4629. DOI: 10.5194/acp-16-4605-2016.
[31] Y. Cui, J. Lin, C. Song. (2016). Rapid growth in nitrogen dioxide pollution over western China, 2005–2013. Atmospheric Chemistry and Physics.16(10):6207-6221. DOI: 10.5194/acp-16-4605-2016.
[32] A. Sharma, T. K. Mandal, S. K. Sharma, D. K. Shukla. et al.(2016). Relationships of surface ozone with its precursors, particulate matter and meteorology over Delhi. Journal of Atmospheric Chemistry.74(4):451-474. DOI: 10.5194/acp-16-4605-2016.
[33] L. N. Lamsal, R. V. Martin, A. V. Donkelaar. (2010). Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern Midlatitudes. Journal of Geophysical Research.115(5):458-473. DOI: 10.5194/acp-16-4605-2016.
[34] L. Liu, X. Zhang, W. Xu. (2017). Temporal characteristics of atmospheric ammonia and nitrogen dioxide over China based on emission data, satellite observations and atmospheric transport modeling since 1980. Atmospheric Chemistry and Physics.17(15):9365-9378. DOI: 10.5194/acp-16-4605-2016.
[35] C. A. McLinden, V. Fioletov, K. F. Boersma. (2014). Improved satellite retrievals of NO and SO over the Canadian oil sands and comparisons with surface measurements. Atmospheric Chemistry and Physics.14(7):3637-3656. DOI: 10.5194/acp-16-4605-2016.
[36] D. Q. Tong, L. Lamsal, L. Pan. (2015). Long-term NO trends over large cities in the United States during the great recession: comparison of satellite retrievals, ground observations, and emission inventories. Atmospheric Environment.107:70-84. DOI: 10.5194/acp-16-4605-2016.
[37] K. F. Boersma, H. J. Eskes, J. P. Veefkind. (2007). Near-real time retrieval of tropospheric NO from OMI. Atmospheric Chemistry and Physics.7(8):2103-2118. DOI: 10.5194/acp-16-4605-2016.
[38] P. Castellanos, K. F. Boersma, O. Torres, J. F. De Haan. et al.(2015). OMI tropospheric NO air mass factors over south America: effects of biomass burning aerosols. Atmospheric Measurement Techniques.8(9):3831-3849. DOI: 10.5194/acp-16-4605-2016.
[39] H. Zou, X. Duan, L. Ye, L. Wang. et al.(2017). Locating sustainability issues: identification of ecological vulnerability in Mainland China’s mega-regions. Sustainability.9(7):1179. DOI: 10.5194/acp-16-4605-2016.
[40] B. N. Duncan, L. N. Lamsal, A. M. Thompson. (2016). A space-based, high-resolution view of notable changes in urban NO pollution around the world (2005–2014). Journal of Geophysical Research: Atmospheres.121(2):976-996. DOI: 10.5194/acp-16-4605-2016.
[41] R. R. Draxler, G. Hess. (1998). An overview of the hysplit_4 modelling system for trajectories. Australian Meteorological Magazine.47:295-308. DOI: 10.5194/acp-16-4605-2016.
文献评价指标
浏览 81次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次