首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2018 ,2018-12-05
Determination of the Engineering Properties of Submarine Soil Layers in the Bohai Sea Using the Piezocone Penetration Test
Research Article
Bohong Wu 1 , 2 Guihe Wang 1 , 3 Jiong Li 1 , 3 Yu Wang 1 , 3 Baolin Liu 1 , 3
Show affiliations
DOI:10.1155/2018/9651045
Received 2018-08-02, accepted for publication 2018-11-07, Published 2018-11-07
PDF
摘要

Due to the complexity of marine geotechnical engineering, the harsh operating environments, loose subsea soils, and high water contents, it is extremely difficult to obtain soil samples while maintaining the in situ conditions in offshore areas. The engineering properties of submarine soil layers in the Bohai Sea, China, were investigated in this work. The Wison-APB borehole wireline piezocone penetration test (CPTU) system was used to conduct direct measurements of the cone tip resistance, sleeve friction, and pore pressure. The soil classification and the related soil properties, such as the undrained shear strength, sensitivity and overconsolidation ratio, shear strength profile at the investigation depths, and the single pile foundation bearing capacity, were estimated. Laboratory tests were also conducted in this work. The CPT test results show that there were large differences between the results of the CPT tests (Su) and the laboratory experimental results, which may be due to the compact silt and hard clay interbeds in some layers. The soil classification was determined according to the previous literature. The laboratory test results of the undrained shear strength, clay sensitivity, and the OCR match the CPT test results best when the parameters Nkt, Ns, and k are 15, 6, and 0.3, respectively. The final determination of the ultimate pile capacity depends on the soil’s mechanical properties and the pile type and design. The effects of wave surge and wind loading should also be taken into account in offshore engineering.

授权许可

Copyright © 2018 Bohong Wu et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Location of the research site.

Wison-APB downhole CPT system (AP van den Berg, [34].

Pore pressure probe of the Wison-APB downhole CPT.

Pore pressure probe of the Wison-APB downhole CPT.

Schematic diagram of the unequal end area: (a) tip resistance; (b) sleeve friction.

Schematic diagram of the unequal end area: (a) tip resistance; (b) sleeve friction.

CPT test results from selected points.

Soil classification using the method of Robertson [49].

Soil classification using the method of Robertson [49].

Soil classification using the method of Eslami and Fellenius [39].

Comparison of the shear strengths from the results of undrained unconsolidated triaxial tests and CPT tests with different Nkt values.

Revised shear strength results of undrained unconsolidated triaxial tests and CPT tests with different Nkt values (clay).

Laboratory shear strength values.

Comparison of the sensitivity results of laboratory tests and CPT tests using different Ns values.

Comparison of the OCR results from laboratory tests and CPT tests with different k values.

Calculated results for the unit end-bearing resistance (qp) and the pile unit skin friction (fp).

Calculated results for the unit end-bearing resistance (qp) and the pile unit skin friction (fp).

通讯作者

Jiong Li.Key Laboratory on Deep Geo-Drilling Technology of the Ministry of Land and Resources, China University of Geosciences, Beijing 100083, China, cug.edu.cn;School of Engineering and Technology, China University of Geosciences, Beijing 100083, China, cug.edu.cn.1943356572@qq.com

推荐引用方式

Bohong Wu,Guihe Wang,Jiong Li,Yu Wang,Baolin Liu. Determination of the Engineering Properties of Submarine Soil Layers in the Bohai Sea Using the Piezocone Penetration Test. Advances in Civil Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Q. Hu, L. S. Tang, H. T. Sang, Z. Li. et al.Predicting sinking resistance of jacked piles with CPT in a multilayer soil at the pearl river delta alluvial plain. :71-75. DOI: 10.1139/t96-022.
[2] P. K. Robertson, R. G. Campanella, D. Gillespie. Excess pore pressures and the flat dilatometer test. .1:567-576. DOI: 10.1139/t96-022.
[3] T. Lunne, S. Lacasse. (1987). Use of in situ tests in North Sea soil investigations. Publikasjon-Norges Geotekniske Institutt.169:1-18. DOI: 10.1139/t96-022.
[4] . DOI: 10.1139/t96-022.
[5] T. Lunne, S. Lacasse, N. S. Rad. (1990). SPT, CPT, pressuremeter testing and recent developments on in situ testing. Publikasjon-Norges Geotekniske Institutt.179. DOI: 10.1139/t96-022.
[6] P. W. Mayne. (1991). Determination of OCR in clays by piezoncone tests using cavity expansion and critical state concepts. Soil and Foundations.31(2):65-76. DOI: 10.1139/t96-022.
[7] L. Yu-ying, F.-j. Mao. (1998). The geotechnical properties of the shallow soil layers of the southern Bohai gulf and their relationship with the sedimentary faces in the area. Marine Sciences.1:44-46. DOI: 10.1139/t96-022.
[8] China Geological Survey Bureau of Geological Survey of Technical Standards, Coastal (Sea). (2012). Environmental Geological Survey Specification (DD2012-06). DOI: 10.1139/t96-022.
[9] C. Liu. Basic geologic research and development planin bohai “A” oilfield. . DOI: 10.1139/t96-022.
[10] R. G. Campanella, D. G. Gillespie, P. K. Robertson. (1981). Pore Pressures during Cone Penetration Testing. DOI: 10.1139/t96-022.
[11] K. N. Senneset. Strength and defomation parameters form cone penetortion. :863-870. DOI: 10.1139/t96-022.
[12] C. Qiang-hua, Y. U. Diao-mei. (1991). The improvement of CPT in China. Chinese Journal of Geotechnical Engineering.13(1):84-95. DOI: 10.1139/t96-022.
[13] G. Cai, S. Liu, A. J. Puppala. (2011). Comparison of CPT charts for soil classification using PCPT data: example from clay deposits in Jiangsu Province, China. Engineering Geology.121(1-2):89-96. DOI: 10.1139/t96-022.
[14] B. Wu. (2008). The Application of Cone Penetration Test in Bohai Offshore Platform Site Investigation. DOI: 10.1139/t96-022.
[15] ASTM Committee D-18 on Soil and Rock. (2011). Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). DOI: 10.1139/t96-022.
[16] A. P. van den Berg. (2007). Ingenieursburo Wison-APB system Operating Instructions. DOI: 10.1139/t96-022.
[17] National Standards of People’s Republic of China. (2001). Code for Investigation of Geotechnical Engineering (GB 50021-2001). DOI: 10.1139/t96-022.
[18] G. Cai, S. Liu, A. J. Puppala. (2011). Evaluation of pile bearing capacity from piezocone penetration test data in soft Jiangsu Quaternary clay deposits. Marine Georesources and Geotechnology.29(3):177-201. DOI: 10.1139/t96-022.
[19] F. S. Niazi. (2015). Discussion: Cai et al. evaluation of pile bearing capacity from piezocone penetration test data in soft Jiangsu Quaternary Clay Deposits. Marine Georesources and Geotechnology.33(1):67-71. DOI: 10.1139/t96-022.
[20] M. S. S. Almeida, F. A. B. Danziger, T. Lunne. (1996). Use of the piezocone test to predict the axial capacity of driven and jacked piles in clay. Canadian Geotechnical Journal.33(1):23-41. DOI: 10.1139/t96-022.
[21] P. K. Robertson. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal.27(1):151-158. DOI: 10.1139/t96-022.
[22] Q. Ya-fei, X. Qin-mian, J. Hong-tao, F. Cheng. et al.(2014). Physical and mechanical parameters of the late quaternary sediments and effect on land subsidence in the Northern Coast of Bohai Bay. Geological Survey and Research.37(2):124-130. DOI: 10.1139/t96-022.
[23] Z.-Q. Wang. (2000). The Chinese CPT and the prospect of penetration tests. Chinese Journal of Geotechnical Engineering.22(5):517-522. DOI: 10.1139/t96-022.
[24] S. L. Shen, J. P. Wang, H. N. Wu, Y.-S. Xu. et al.(2015). Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing. Ocean Engineering.110:174-182. DOI: 10.1139/t96-022.
[25] F. Xiuli, S. Weiquan. (2006). Marine Engineering Geological Monograph. DOI: 10.1139/t96-022.
[26] B. Tarawneh, A. Sbitnev, Y. Hakam. (2018). Estimation of pressuremeter modulus and limit pressure from Cone Penetration Test for desert sands. Construction and Building Materials.169:299-305. DOI: 10.1139/t96-022.
[27] ASTM D2850-15. (2015). Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. DOI: 10.1139/t96-022.
[28] K. Terzaghi, R. B. Peck, G. Mesri. (1996). Soil Mechanics in Engineering Practice. DOI: 10.1139/t96-022.
[29] ASTM D2573/D2573M-15. (2015). Standard Test Method for Field Vane Shear Test in Saturated Fine-Grained Soils. DOI: 10.1139/t96-022.
[30] A. Eslami, B. H. Fellenius. (1997). Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal.34(6):886-904. DOI: 10.1139/t96-022.
[31] P. W. Mayne. (1991). Determination of OCR in clays by piezoncone tests using cavity expansion and critical state concepts. Soil and Foundations.31(2):65-76. DOI: 10.1139/t96-022.
[32] P. K. Robertson. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal.27(1):151-158. DOI: 10.1139/t96-022.
[33] Z. Rémai. (2013). Correlation of undrained shear strength and CPT resistance. Periodica Polytechnica Civil Engineering.57(1):39-44. DOI: 10.1139/t96-022.
[34] S. Li, X. Bao-Zhao, L. Jian-tao, Z. Yang-rui. et al.(2014). Study of characteristics of laminated soil in South China Sea. Rock and Soil Mechanics.35(1):203-209. DOI: 10.1139/t96-022.
[35] T. Kalscheuer, M. Bastani, S. Donohue. (2013). Delineation of a quick clay zone at Smørgrav, Norway, with electromagnetic methods under geotechnical constraints. Journal of Applied Geophysics.92:121-136. DOI: 10.1139/t96-022.
[36] G. J. Cai, S. Y. Liu, L. Y. Tong, G. Y. Du. et al.(2010). Field evaluation of undrained shear strength from piezocone penetration tests in soft marine clay. Marine Georesources and Geotechnology.28(2):143-153. DOI: 10.1139/t96-022.
[37] Y.‐F. Yu, X.‐F. Zhang, F. Li. (2006). Experimental study on deformation modulus and oundation bearing capacity of desert sand. Geotechnical Engineering World.9(6):30-32. DOI: 10.1139/t96-022.
[38] B. Ebrahimian, V. Movahed, A. Y. Pasha. (2012). Evaluation of undrained shear strength of marine clay using cone penetration resistance at South Pars field in Iran. Ocean Engineering.54:182-195. DOI: 10.1139/t96-022.
[39] J. H. Schmertmann. Measurement of in situ shear strength, SOA Report. .2:57-138. DOI: 10.1139/t96-022.
[40] I. L. Solberg, M. Long, V. C. Baranwal, A. S. Gylland. et al.(2016). Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Engineering Geology.208:214-230. DOI: 10.1139/t96-022.
[41] H. Moayedi, S. Hayati. (2018). Applicability of a CPT-based neural network solution in predicting load-settlement responses of bored pile. International Journal of Geomechanics.18(6). DOI: 10.1139/t96-022.
[42] F. P. Nejad, M. B. Jaksa. (2017). Load-settlement behavior modeling of single piles using artificial neural networks and CPT data. Computers and Geotechnics.89:9-21. DOI: 10.1139/t96-022.
[43] J. H. Schmertmann. (1978). Guidelines for Cone Penetration Test: Performance and Design. DOI: 10.1139/t96-022.
[44] G. Ballas, S. Garziglia, N. Sultan. (2018). Influence of early diagenesis on geotechnical properties of clay sediments (Romania, Black Sea). Engineering Geology.240:175-188. DOI: 10.1139/t96-022.
[45] H. Li, S. Liu, L. Tong. (2017). Study on p-y curve from cptu test and its application to horizontal bearing capacity of single pile. Chinses Journal of Rock Mechanics and Engineering.36:1-8. DOI: 10.1139/t96-022.
[46] N. Sultan, M. Voisset, T. Marsset. (2007). Detection of free gas and gas hydrate based on 3D seismic data and cone penetration testing: an example from the Nigerian Continental Slope. Marine Geology.240(1–4):235-255. DOI: 10.1139/t96-022.
[47] G. Rajasekaran, S. N. Rao. (2004). Falling cone method to measure the strength of marine clays. Ocean Engineering.31(14-15):1915-1927. DOI: 10.1139/t96-022.
[48] M. M. Baligh, V. Vivatrat, C. C. Ladd. (1980). Cone penetration in soil profiling. Journal of Geotechnical and Geoenvironmental Engineering.106. DOI: 10.1139/t96-022.
[49] S.-z. Guo, R. Liu. (2015). Application of cone penetration test in offshore engineering. Chinese Journal of Geotechnical Engineering.37(1):207-211. DOI: 10.1139/t96-022.
[50] H. Ma, M. Zhou, Y. Hu, M. S. Hossain. et al.(2017). Effects of cone tip roughness, in-situ stress anisotropy and strength inhomogeneity on CPT data interpretation in layered marine clays: numerical study. Engineering Geology.227:12-22. DOI: 10.1139/t96-022.
文献评价指标
浏览 331次
下载全文 83次
评分次数 206次
用户评分 0.0分
分享 0次