首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2018 ,2018-10-23
Mechanism of Strain Burst by Laboratory and Numerical Analysis
Research Article
Manchao He 1 Fuqiang Ren 1 , 2 Cheng Cheng 3
Show affiliations
DOI:10.1155/2018/8940798
Received 2018-05-23, accepted for publication 2018-07-26, Published 2018-07-26
PDF
摘要

Strain burst is often considered to be a type of failure related to brittle rock material; therefore, many studies on strain burst focus on the brittleness of rock. However, the laboratory experiments show that strain burst can not only occur in hard brittle rock-like granite but also in the relatively ductile rock-like argillaceous sandstone. This result proves that behavior of rock material is not the only factor influencing the occurrence of strain burst. What must also be considered is the relative stiffness between the excavation wall/ore body and the surrounding rock mass. In order to further studying the mechanism of strain burst considering the whole system, the engineering geomechanial model and numerical model of strain burst due to excavation are built, respectively. In a series of numerical tests, the rock mass involving the excavation wall as well as roof and floor is biaxially loaded to the in situ stress state before one side of the excavation wall is unloaded abruptly to simulate the excavation in the field. With various system stiffness determined by the microproperties including the contact moduli of particles and parallel bond moduli in the models of roof and floor, the different failure characteristics are obtained. Based on the failure phenomenon, deformation, and released energy from the roof and floor, this study proves that the system stiffness is a key factor determining the violence of the failure, and strain burst is prone to happen when the system is soft. Two critical Young’s moduli ratios and stiffness ratios are identified to assess the violence of failure.

授权许可

Copyright © 2018 Manchao He et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Stress-time curves of (a) granite and (b) argillaceous sandstone [22] in the laboratory strain burst experiments.

Stress-time curves of (a) granite and (b) argillaceous sandstone [22] in the laboratory strain burst experiments.

Failure process of the granite in the strain burst test captured by the high-speed camera. The number under each photograph shows the time (h : min : s ms).

Failure process of the argillaceous sandstone in the strain burst test captured by the high-speed camera [22].

Schematic of the engineering geological model and engineering geomechanical model for strain burst considering different stiffness of the rock layers. The dashed rectangular frames in both graphs illustrate the zone including the excavation wall, roof, and floor that are discussed in this study.

PFC model for strain burst.

(a) Uniaxial compressive test on an intact specimen and (b) stress-strain curve for the intact rock and the calculated stiffness.

(a) Uniaxial compressive test on an intact specimen and (b) stress-strain curve for the intact rock and the calculated stiffness.

Failure modes and crack distribution after excavation in the PFC tests considering different system stiffness ratios. The numbers under each model are Young’s modulus ratio (RE) and stiffness ratio (RK), respectively.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #B strain burst test (RE = 0.0091 and RK = 0.0182). (a) Step 609944. (b) Step 617644. (c) Step 624744. (d) Step 629644. (e) Step 634844. (f) Step 639444. (g) Step 645544. (h) Step 655844.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Failure process of #F4 strain burst test (RE = 9.8870 and RK = 19.7741). (a) Step 49881. (b) Step 51481. (c) Step 52881. (d) Step 54681. (e) Step 56281. (f) Step 57681. (g) Step 60181. (h) Step 80181.

Vertical stress-strain curves of the roof and floor after unloading on one side of the excavation wall under various system stiffness. The two numbers under each graph are Young’s modulus ratio (RE) and stiffness ratio (RK), respectively. The magnification of the last five graphs is also plotted due to the relatively small strains.

(a) Relationship between the strain variation of roof and floor after peak strength and the system stiffness ratio (RE). (b) Relationship between the strain energy densities of roof and floor after peak strength and the system stiffness ratio (RK).

(a) Relationship between the strain variation of roof and floor after peak strength and the system stiffness ratio (RE). (b) Relationship between the strain energy densities of roof and floor after peak strength and the system stiffness ratio (RK).

(a) Elements of the strain burst main machine [20] and (b) the schematic of the stiffness calculation in vertical direction.

(a) Elements of the strain burst main machine [20] and (b) the schematic of the stiffness calculation in vertical direction.

The comparison of the stiffness ratio obtained from the numerical and experimental tests, respectively.

通讯作者

Fuqiang Ren.State Key Laboratory for Geomechanics & Deep Underground Engineering, Beijing 100083, China;School of Mechanics and Civil Engineering, China University of Mining & Technology, Beijing 100083, China, cumt.edu.cn.xq1050211@163.com

推荐引用方式

Manchao He,Fuqiang Ren,Cheng Cheng. Mechanism of Strain Burst by Laboratory and Numerical Analysis. Shock and Vibration ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. O. Potyondy, P. A. Cundall. (2004). A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences.41(8):1329-1364. DOI: 10.1007/bf01043119.
[2] M. S. Diederichs, P. K. Kaiser, E. Eberhardt. (2004). Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics and Mining Sciences.41(5):785-812. DOI: 10.1007/bf01043119.
[3] J. F. Hazzard, R. P. Young. (2000). Simulating acoustic emissions in bonded-particle models of rock. International Journal of Rock Mechanics and Mining Sciences.37(5):867-872. DOI: 10.1007/bf01043119.
[4] J. Zhang, B. Fu, Z. Li, S. Song. et al.Criterion and classification for strain mode rockbursts based on five-factor comprehensive method. . DOI: 10.1007/bf01043119.
[5] G. R. Khanlari, Ghaderi. Analysis of rock burst in critical section of second part of Karaj-Tehran water supply tunne. . DOI: 10.1007/bf01043119.
[6] G. E. Andreev. (1995). Brittle Failure of Rock Materials: Test Results and Constitutive Models. DOI: 10.1007/bf01043119.
[7] Hoek. (2007). Practical Rock Engineering. DOI: 10.1007/bf01043119.
[8] J. Handin. (1966). Strength and ductility. Handbook of Physical Constants.97:223-289. DOI: 10.1007/bf01043119.
[9] M. He, J. Miao, J. Feng. (2010). Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions. International Journal of Rock Mechanics and Mining Sciences.47(2):286-298. DOI: 10.1007/bf01043119.
[10] M. He, H. Xia, X. Jia, W. Gong. et al.(2012). Studies on classification, criteria and control of rockbursts. Journal of Rock Mechanics and Geotechnical Engineering.4(2):97-114. DOI: 10.1007/bf01043119.
[11] N. G. W. Cook. (1965). A note on rockbursts considered as a problem of stability. Journal of the South African Institute of Mining and Metallurgy.65:437-46. DOI: 10.1007/bf01043119.
[12] A. N. Stavrogin, B. G. Tarasov. (2001). Experimental physics and rock mechanics. American Psychologist.5:627-633. DOI: 10.1007/bf01043119.
[13] M. C. He, W. Nie, Z. Y. Zhao, W. Guo. et al.(2012). Experimental investigation of bedding plane orientation on the rockburst behavior of sandstone. Rock Mechanics and Rock Engineering.45(3):311-326. DOI: 10.1007/bf01043119.
[14] L. Jing. (2003). A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences.40(3):283-353. DOI: 10.1007/bf01043119.
[15] B. H. G. Brady, E. T. Brown. (1981). Energy changes and stability in underground mining: design applications of boundary element methods. Transactions of the Institution of Mining and Metallurgy.90:61-68. DOI: 10.1007/bf01043119.
[16] P. Kaiser, D. Tannant, D. R. Mccreath. (1996). Drift support in burst-prone ground. Proceedings of the National Academy of Sciences of the United States of America.72:3863-3867. DOI: 10.1007/bf01043119.
[17] B. An, D. D. Tannant. (2007). Discrete element method contact model for dynamic simulation of inelastic rock impact. Computers and Geosciences.33(4):513-521. DOI: 10.1007/bf01043119.
[18] D. O. Potyondy. (2007). Simulating stress corrosion with a bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences.44(5):677-691. DOI: 10.1007/bf01043119.
[19] M. Cai, P. K. Kaiser, H. Morioka. (2007). Flac/pfc coupled numerical simulation of ae in large-scale underground excavations. International Journal of Rock Mechanics and Mining Sciences.44(4):550-564. DOI: 10.1007/bf01043119.
[20] N. Cho, C. D. Martin, D. C. Sego. (2007). A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences.44(7):997-1010. DOI: 10.1007/bf01043119.
[21] Aglawe, J. Prataprao. Unstable and violent failure around underground openings in highly stressed ground. . DOI: 10.1007/bf01043119.
[22] V. Hucka, B. Das. (1974). Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.11(10):389-392. DOI: 10.1007/bf01043119.
[23] T. S. Wanne, R. P. Young. (2008). Bonded-particle modeling of thermally fractured granite. International Journal of Rock Mechanics and Mining Sciences.45(5):789-799. DOI: 10.1007/bf01043119.
[24] M. D. G. Salamon. (1970). Stability, instability and design of pillar workings. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.7(6):613-631. DOI: 10.1007/bf01043119.
[25] S. P. Singh. (1988). Burst energy release index. Rock Mechanics and Rock Engineering.21(2):149-155. DOI: 10.1007/bf01043119.
[26] Y. Tan. (1992). Rockbursting characteristics and structural effects of rock mass. Science China Chemistry.35:981-990. DOI: 10.1007/bf01043119.
[27] E. M. C. Kias, R. Gu, R. Garvey. (2011). Modeling Unstable Rock Failure During A Uniaxial Compressive Strength Test. DOI: 10.1007/bf01043119.
[28] Y. Tan, C. Sun. (1995). An analysis of present-day regional tectonic stress field and crustal movement trend in China. Journal Geomechanics.1:12. DOI: 10.1007/bf01043119.
[29] D. G. F. Hedley. Rockburst handbook for Ontario hardrock mines. . DOI: 10.1007/bf01043119.
[30] R. Simon, M. Aubertin, H. S. Mitri. Evaluation of rockburst potential in hard rock mines. :257-266. DOI: 10.1007/bf01043119.
[31] G. Zhao, D. Wang, B. Gao, S. Wang. et al.(2016). Modifying rock burst criteria based on observations in a division tunnel. Engineering Geology.216:153-160. DOI: 10.1007/bf01043119.
[32] W. Blake. (1972). Rock-burst mechanics. Quarterly of the Colorado School of Mines.67:1. DOI: 10.1007/bf01043119.
[33] P. K. Kaiser, C. A. Tang. (1998). Numerical simulation of damage accumulation and seismic energy release during brittle rock failure-part II: rib pillar collapse. International Journal of Rock Mechanics and Mining Sciences.35(2):123-134. DOI: 10.1007/bf01043119.
文献评价指标
浏览 86次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次