首页 » 文章 » 文章详细信息
BioMed Research International Volume 2018 ,2018-11-15
Fucoxanthin Exerts Cytoprotective Effects against Hydrogen Peroxide-induced Oxidative Damage in L02 Cells
Research Article
Xia Wang 1 , 2 Yan-jun Cui 3 Jia Qi 3 Min-min Zhu 3 Tian-liang Zhang 4 Min Cheng 5 Shun-mei Liu 3 , 4 Guang-ce Wang 6
Show affiliations
DOI:10.1155/2018/1085073
Received 2018-09-11, accepted for publication 2018-10-28, Published 2018-10-28
PDF
摘要

Several previous studies have demonstrated the excellent antioxidant activity of fucoxanthin against oxidative stress which is closely related to the pathogenesis of liver diseases. The present work was to investigate whether fucoxanthin could protect human hepatic L02 cells against hydrogen peroxide- (H2O2-) induced oxidative damage. Its effects on H2O2-induced cell viability, lactate dehydrogenase (LDH) leakage, intracellular reduced glutathione, and reactive oxygen species (ROS) contents, along with mRNA and protein relative levels of the cytoprotective genes including Nrf2, HO-1, and NQO1, were investigated. The results showed that fucoxanthin could upregulate the mRNA and protein levels of the cytoprotective genes and promote the nuclear translocation of Nrf2, which could be inhibited by the PI3K inhibitor of LY294002. Pretreatment of fucoxanthin resulted in decreased LDH leakage and intracellular ROS content but enhanced intracellular reduced glutathione. Interestingly, pretreatment using fucoxanthin protected against the oxidative damage in a nonconcentration-dependent manner, with fucoxanthin of 5 μM demonstrating the optimal effects. The results suggest that fucoxanthin exerts cytoprotective effects against H2O2-induced oxidative damage in L02 cells, which may be through the PI3K-dependent activation of Nrf2 signaling.

授权许可

Copyright © 2018 Xia Wang et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Effects of H2O2 treatment on the viability of L02 cells. Data were presented as means ± SD, n=3. ##: P < 0.01 (compared with control).

Effects of fucoxanthin on the viability of H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; VE: 50 μM vitamin E + H2O2. Data were presented as means ± SD, n=3.

Effects of fucoxanthin on H2O2-induced L02 cellular LDH leakage. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; VE: 50 μM vitamin E + H2O2. Data was shown as percentage of maximum LDH release group and presented as means ± SD, n=3. ##: P < 0.01, compared with control; ∗: P < 0.05, compared with model group.

Effects of fucoxanthin on intracellular GSH content in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; VE: 50 μM vitamin E + H2O2. Data was shown as a percentage of the maximum LDH release group and presented as means ± SD, n=3. ##: P < 0.01, compared with control; ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; VE: 50 μM vitamin E + H2O2. The data was shown as means ± SD, n=3. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on intracellular ROS contents in H2O2-treated L02 cells (×200 magnification). (a): control; (b): H2O2 model group; (c): 1 μM fucoxanthin + H2O2; (d): 5 μM fucoxanthin+ H2O2; (e): 10 μM fucoxanthin +H2O2; (f): 20 μM fucoxanthin +H2O2; (g): 50 μM vitamin E + H2O2; (h): Analysis of intracellular ROS based on fluorescence microscope. ##: P < 0.01, compared with control; ∗: P < 0.05, ∗∗: P < 0.01, compared with model group.

Effects of fucoxanthin on nuclear translocation of Nrf2 in H2O2-treated L02 cells (×200 magnification). Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: H2O2 + 5 μM fucoxanthin + LY294002; VE: 50 μM vitamin E + H2O2; Nucleus stained with Hoechst appears as blue fluorescence in the first column and stained Nrf2 appears as green fluorescence in the second column, with the merged as the synthesis of them both.

Effects of fucoxanthin on mRNA relative level of Nrf2 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. ##: P < 0.01, compared with control; ∗∗: P < 0.01, compared with model group; &&: P < 0.01, compared with group F5.

Effects of fucoxanthin on mRNA relative level of HO-1 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. #: P < 0.05, compared with control; ∗∗: P < 0.01, compared with model group; &&: P < 0.01, compared with group F5.

Effects of fucoxanthin on mRNA relative level of NQO1 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. ##: P < 0.01, compared with control; ∗: P < 0.05, compared with model group; ∗∗: P < 0.01, compared with model group; &: P < 0.05, compared with group F5.

Effects of fucoxanthin on expression of Nrf2 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. #: P < 0.05, compared with control; ∗: P < 0.05, compared with model group; ∗∗: P < 0.01, compared with model group; &&: P < 0.01, compared with group F5.

Effects of fucoxanthin on expression of HO-1 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. #: P < 0.05, compared with control; ∗∗: P < 0.01, compared with model group; &&: P < 0.01, compared with group F5.

Effects of fucoxanthin on expression of NQO1 in H2O2-treated L02 cells. Con: control; Mod: H2O2 model group; F1: 1 μM fucoxanthin + H2O2; F5: 5 μM fucoxanthin+ H2O2; F10: 10 μM fucoxanthin +H2O2; F20: 20 μM fucoxanthin +H2O2; L: 5 μM fucoxanthin + H2O2 + LY294002; Data was presented as means ± SD, n=3. ∗∗: P < 0.01, compared with model group; &&: P < 0.01, compared with group F5.

通讯作者

1. Shun-mei Liu.School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China, wfmc.edu.cn;Experimental Center for Medical Research, Weifang Medical University, Weifang 261053, China, wfmc.edu.cn.liushm@wfmc.edu.cn
2. Guang-ce Wang.Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, cas.cn.gcwang@qdio.ac.cn

推荐引用方式

Xia Wang,Yan-jun Cui,Jia Qi,Min-min Zhu,Tian-liang Zhang,Min Cheng,Shun-mei Liu,Guang-ce Wang. Fucoxanthin Exerts Cytoprotective Effects against Hydrogen Peroxide-induced Oxidative Damage in L02 Cells. BioMed Research International ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Tanoi, T. Tamura, N. Sano, K. Nakayama. et al.(2016). Protecting liver sinusoidal endothelial cells suppresses apoptosis in acute liver damage. Hepatology Research.46(7):697-706. DOI: 10.1016/j.celrep.2017.09.026.
[2] D. Ross, D. Siegel. (2017). Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Frontiers in Physiology.8. DOI: 10.1016/j.celrep.2017.09.026.
[3] S. Sabouri-Rad, R. K. Oskuee, A. Mahmoodi, L. Gholami. et al.(2017). The effect of cell penetrating peptides on transfection activity and cytotoxicity of polyallylamine. BioImpacts.7(3):139-145. DOI: 10.1016/j.celrep.2017.09.026.
[4] W. Durante. (2002). Carbon monoxide and bile pigments: Surprising mediators of vascular function. Vascular Medicine.7(3):195-202. DOI: 10.1016/j.celrep.2017.09.026.
[5] X. Yan, Y. Chuda, M. Suzuki, T. Nagata. et al.(1999). Fucoxanthin as the major antioxidant in , a common edible seaweed. Bioscience, Biotechnology, and Biochemistry.63(3):605-607. DOI: 10.1016/j.celrep.2017.09.026.
[6] J. E. Clark, R. Foresti, C. J. Green, R. Motterlini. et al.(2000). Dynamics of haem oxygenase-1 expression and bilirubin production in cellular protection against oxidative stress. Biochemical Journal.348(3):615-619. DOI: 10.1016/j.celrep.2017.09.026.
[7] W. Tang, Y.-F. Jiang, M. Ponnusamy, M. Diallo. et al.(2014). Role of Nrf2 in chronic liver disease. World Journal of Gastroenterology.20(36):13079-13087. DOI: 10.1016/j.celrep.2017.09.026.
[8] Q.-J. Jin, J.-F. Feng, Y. Sun, W.-T. Cui. et al.(2012). Characterization of a heme oxygenase-1 from tobacco that is involved in some abiotic stress responses. International Journal of Plant Sciences.173(2):113-123. DOI: 10.1016/j.celrep.2017.09.026.
[9] G. Cao, R. G. Cutler. (1993). High concentrations of antioxidants may not improve defense against oxidative stress. Archives of Gerontology and Geriatrics.17(3):189-201. DOI: 10.1016/j.celrep.2017.09.026.
[10] A. N. Carvalho, O. Firuzi, M. J. Gama, J. van Horssen. et al.(2016). Oxidative stress and antioxidants in neurological diseases: Is there still hope?. Current Drug Targets.17(16). DOI: 10.1016/j.celrep.2017.09.026.
[11] M. Valko, M. Izakovic, M. Mazur, C. J. Rhodes. et al.(2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biochemistry.266(1-2):37-56. DOI: 10.1016/j.celrep.2017.09.026.
[12] B. Halliwell. (2013). The antioxidant paradox: less paradoxical now?. British Journal of Clinical Pharmacology.75(3):637-644. DOI: 10.1016/j.celrep.2017.09.026.
[13] M. Gülden, A. Jess, J. Kammann, E. Maser. et al.(2010). Cytotoxic potency of H2O2 in cell cultures: Impact of cell concentration and exposure time. Free Radical Biology & Medicine.49(8):1298-1305. DOI: 10.1016/j.celrep.2017.09.026.
[14] C.-L. Liu, Y.-T. Chiu, M.-L. Hu. (2011). Fucoxanthin enhances HO-1 and NQO1 expression in murine hepatic BNL CL.2 Cells through activation of the Nrf2/ARE system partially by its pro-oxidant activity. Journal of Agricultural and Food Chemistry.59(20):11344-11351. DOI: 10.1016/j.celrep.2017.09.026.
[15] J. A. Woods, R. F. Bilton, A. J. Young. (1999). -Carotene enhances hydrogen peroxide-induced DNA damage in human hepatocellular HepG2 cells. FEBS Letters.449(2-3):255-258. DOI: 10.1016/j.celrep.2017.09.026.
[16] P. M. Riccillo, C. I. Muglia, F. J. De Bruijn, A. J. Roe. et al.(2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. Journal of Bacteriology.182(6):1748-1753. DOI: 10.1016/j.celrep.2017.09.026.
[17] P. Zhang, S. T. Omaye. (2000). -Carotene and protein oxidation: Effects of ascorbic acid and -tocopherol. Toxicology.146(1):37-47. DOI: 10.1016/j.celrep.2017.09.026.
[18] H. Shi, A. Shi, L. Dong, X. Lu. et al.(2016). Chlorogenic acid protects against liver fibrosis in vivo and in vitro through inhibition of oxidative stress. Clinical Nutrition.35(6):1366-1373. DOI: 10.1016/j.celrep.2017.09.026.
[19] J. Zheng, M. J. Piao, Y. S. Keum, H. S. Kim. et al.(2013). Fucoxanthin protects cultured human keratinocytes against oxidative stress by blocking free radicals and inhibiting apoptosis. Biomolecules & Therapeutics.21(4):270-276. DOI: 10.1016/j.celrep.2017.09.026.
[20] P. Palozza, S. Serini, N. Maggiano, M. Angelini. et al.(2002). Induction of cell cycle arrest and apoptosis in human colon adenocarcinoma cell lines by -carotene through down-regulation of cyclin A and Bcl-2 family proteins. Carcinogenesis.23(1):11-18. DOI: 10.1016/j.celrep.2017.09.026.
[21] Y. Zhang, H. Fang, Q. Xie, J. Sun. et al.(2014). Comparative evaluation of the radical-scavenging activities of fucoxanthin and its stereoisomers. Molecules.19(2):2100-2113. DOI: 10.1016/j.celrep.2017.09.026.
[22] T. Nomura, M. Kikuchi, A. Kubodera, Y. Kawakami. et al.(1997). Proton-donative antioxidant activity of fucoxanthin with 1,1-diphenyl-2-picrylhydrazyl (DPPH). International Journal of Biochemistry and Molecular Biology.42(2):361-370. DOI: 10.1016/j.celrep.2017.09.026.
[23] H. J. Kim, S. Y. Lee, S. C. Oh. (2016). The inositide signaling pathway as a target for treating gastric cancer and colorectal cancer. Frontiers in Physiology.7, article 168. DOI: 10.1016/j.celrep.2017.09.026.
[24] K. M. Vasudevan, L. A. Garraway. (2010). AKT signaling in physiology and disease. Current Topics in Microbiology and Immunology.347(1):105-133. DOI: 10.1016/j.celrep.2017.09.026.
[25] N. E. Geacintov, H. Hibshoosh, V. Ibanez, M. J. Benjamin. et al.(1984). Mechanisms of reaction of benzo(a)pyrene-7,8-diol-9,10-epoxide with DNA in aqueous solutions. Biophysical Chemistry.20(1-2):121-133. DOI: 10.1016/j.celrep.2017.09.026.
[26] A. Kawee-ai, A. Kuntiya, S. M. Kim. (2013). Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga. Natural Product Communications (NPC).8(10):1381-1386. DOI: 10.1016/j.celrep.2017.09.026.
[27] S. F. Koduvayur Habeebullah, A. Surendraraj, C. Jacobsen. (2018). solation of Fucoxanthin from Brown Algae and Its Antioxidant Activity: In Vitro and 5
[28] Fish Oil-In-Water Emulsion. Journal of the American Oil Chemists' Society.95(7):835-843. DOI: 10.1016/j.celrep.2017.09.026.
[29] H. Raza, A. John, F. C. Howarth. (2015). Increased oxidative stress and mitochondrial dysfunction in zucker diabetic rat liver and brain. Cellular Physiology and Biochemistry.35:1241-1251. DOI: 10.1016/j.celrep.2017.09.026.
[30] J.-Y. Je, P.-J. Park, S.-K. Kim. (2004). Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food and Chemical Toxicology.42(3):381-387. DOI: 10.1016/j.celrep.2017.09.026.
[31] R. Pangestuti, S.-K. Kim. (2011). Neuroprotective effects of marine algae. Marine Drugs.9(5):803-818. DOI: 10.1016/j.celrep.2017.09.026.
[32] Z. Liu, Y. Liu, D. Peng. (2015). Carboxylation of multiwalled carbon nanotube attenuated the cytotoxicity by limiting the oxidative stress initiated cell membrane integrity damage, cell cycle arrestment, and death receptor mediated apoptotic pathway. Journal of Biomedical Materials Research Part A.103(8):2770-2777. DOI: 10.1016/j.celrep.2017.09.026.
[33] Y.-S. Yang, T.-H. Ahn, J.-C. Lee, C.-J. Moon. et al.(2008). Protective effects of on carbon tetrachloride-induced hepatotoxicity in Sprague—Dawley rats. Food and Chemical Toxicology.46(1):380-387. DOI: 10.1016/j.celrep.2017.09.026.
[34] G. M. Lowe, L. A. Booth, A. J. Young, R. F. Bilton. et al.(1999). Lycopene and -carotene protect against oxidative damage in HT29 cells at low concentrations but rapidly lose this capacity at higher doses. Free Radical Research.30(2):141-151. DOI: 10.1016/j.celrep.2017.09.026.
[35] T. Suzuki, H. Motohashi, M. Yamamoto. (2013). Toward clinical application of the Keap1-Nrf2 pathway. Trends in Pharmacological Sciences.34(6):340-346. DOI: 10.1016/j.celrep.2017.09.026.
[36] M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic. et al.(2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions.160(1):1-40. DOI: 10.1016/j.celrep.2017.09.026.
[37] I. Urikura, T. Sugawara, T. Hirata. (2011). Protective effect of fucoxanthin against UVB-induced skin photoaging in hairless mice. Bioscience, Biotechnology, and Biochemistry.75(4):757-760. DOI: 10.1016/j.celrep.2017.09.026.
[38] R. Pangestuti, T.-S. Vo, D.-H. Ngo, S.-K. Kim. et al.(2013). Fucoxanthin ameliorates inflammation and oxidative reponses in microglia. Journal of Agricultural and Food Chemistry.61(16):3876-3883. DOI: 10.1016/j.celrep.2017.09.026.
[39] S. Xia, K. Wang, L. Wan, A. Li. et al.(2013). Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom odontella aurita. Marine Drugs.11(7):2667-2681. DOI: 10.1016/j.celrep.2017.09.026.
[40] C.-L. Liu, A.-L. Liang, M.-L. Hu. (2011). Protective effects of fucoxanthin against ferric nitrilotriacetate-induced oxidative stress in murine hepatic BNL CL.2 cells. Toxicology in Vitro.25(7):1314-1319. DOI: 10.1016/j.celrep.2017.09.026.
[41] H. Maeda, M. Hosokawa, T. Sashima, K. Miyashita. et al.(2007). Dietary combination of fucoxanthin and fish oil attenuates the weight gain of white adipose tissue and decreases blood glucose in obese/diabetic KK- mice. Journal of Agricultural and Food Chemistry.55(19):7701-7706. DOI: 10.1016/j.celrep.2017.09.026.
[42] A. Mirshafiey, S. Hosseini, S. Afraei, N. Rastkari. et al.(2016). Anti-aging property of g2013 molecule as a novel immunosuppressive agent on enzymatic and non-enzymatic oxidative stress determinants in rat model. Current Drug Discovery Technologies.13(1):25-33. DOI: 10.1016/j.celrep.2017.09.026.
[43] J. P. Groten, W. Butler, V. J. Feron, G. Kozianowski. et al.(2000). An analysis of the possibility for health implications of joint actions and interactions between food additives. Regulatory Toxicology and Pharmacology.31(1):77-91. DOI: 10.1016/j.celrep.2017.09.026.
[44] M. Matsui, K. Tanaka, N. Higashiguchi, H. Okawa. et al.(2016). Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation. Journal of Pharmacological Sciences.132(1):55-64. DOI: 10.1016/j.celrep.2017.09.026.
[45] S.-J. Heo, Y.-J. Jeon. (2009). Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. Journal of Photochemistry and Photobiology B: Biology.95(2):101-107. DOI: 10.1016/j.celrep.2017.09.026.
[46] N. Ito, M. Hirose, S. Fukushima, H. Tsuda. et al.(1986). Studies on antioxidants: their carcinogenic and modifying effects on chemical carcinogenesis. Food and Chemical Toxicology.24(10-11):1071-1081. DOI: 10.1016/j.celrep.2017.09.026.
[47] D. E. Hathway. (1966). Metabolic Fate in Animals of Hindered Phenolic Antioxidants in Relation to their Safety Evaluation and Antioxidant Function. Advances in Food and Nutrition Research.15(C):1-56. DOI: 10.1016/j.celrep.2017.09.026.
[48] J. Zheng, M. J. Piao, K. C. Kim, C. W. Yao. et al.(2014). Fucoxanthin enhances the level of reduced glutathione via the Nrf2-mediated pathway in human keratinocytes. Marine Drugs.12(7):4214-4230. DOI: 10.1016/j.celrep.2017.09.026.
[49] R. K. Sangeetha, N. Bhaskar, V. Baskaran. (2009). Comparative effects of beta-carotene and fucoxanthin on retinol deficiency induced oxidative stress in rats. Molecular and Cellular Biochemistry.331(1-2):59-67. DOI: 10.1016/j.celrep.2017.09.026.
[50] R. Gozzelino, V. Jeney, M. P. Soares. (2010). Mechanisms of cell protection by heme Oxygenase-1. Annual Review of Pharmacology and Toxicology.50:323-354. DOI: 10.1016/j.celrep.2017.09.026.
[51] Y.-J. Surh, J. K. Kundu, H.-K. Na. (2008). Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Medica.74(13):1526-1539. DOI: 10.1016/j.celrep.2017.09.026.
[52] R. C. Rabinovitch, B. Samborska, B. Faubert, E. H. Ma. et al.(2017). AMPK Maintains Cellular Metabolic Homeostasis through Regulation of Mitochondrial Reactive Oxygen Species. Cell Reports.21(1):1-9. DOI: 10.1016/j.celrep.2017.09.026.
[53] L.-L. Ji, M. Zhang, Y.-C. Sheng, Z.-T. Wang. et al.(2005). Pyrrolizidine alkaloid clivorine induces apoptosis in human normal liver L-02 cells and reduces the expression of p53 protein. Toxicology in Vitro.19(1):41-46. DOI: 10.1016/j.celrep.2017.09.026.
[54] M. Hosokawa. (2010). Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-Ay mice. Archives of Biochemistry Biophysics.504(1):17-25. DOI: 10.1016/j.celrep.2017.09.026.
[55] S. K. Das, T. Hashimoto, K. Kanazawa. (2008). Growth inhibition of human hepatic carcinoma HepG2 cells by fucoxanthin is associated with down-regulation of cyclin D. Biochimica et Biophysica Acta (BBA) - General Subjects.1780(4):743-749. DOI: 10.1016/j.celrep.2017.09.026.
[56] Y. G. Ermakova, D. S. Bilan, M. E. Matlashov, N. M. Mishina. et al.(2014). Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide. Nature Communications.5(1). DOI: 10.1016/j.celrep.2017.09.026.
[57] Z. Luo, W. J. Welch, C. S. Wilcox. (2015). Abstract 122: activation of nuclear factor erythroid 2-related factor 2 (nrf2) enhances cyclooxygenase 2 expression via promoter antioxidant response element in preglomerular vascular smooth muscle cells (pgvsmcs). Acta Radiologica.40(5):545-551. DOI: 10.1016/j.celrep.2017.09.026.
[58] P. Palozza. (1998). Prooxidant actions of carotenoids in biologic systems. Nutrition Reviews.56(9):257-265. DOI: 10.1016/j.celrep.2017.09.026.
[59] N. Delanty, M. Dichter. (2001). Antioxidant therapy in neurologic disease. American Journal of Ophthalmology.131(2):288. DOI: 10.1016/j.celrep.2017.09.026.
[60] A. Nishino, H. Yasui, T. Maoka. (2017). Reaction and scavenging mechanism of -carotene and zeaxanthin with reactive oxygen species. Journal of Oleo Science.66(1):77-84. DOI: 10.1016/j.celrep.2017.09.026.
[61] T. Tanaka, M. Shnimizu, H. Moriwaki. (2012). Cancer chemoprevention by carotenoids. Molecules.17(3):3202-3242. DOI: 10.1016/j.celrep.2017.09.026.
[62] A. J. Young, G. M. Lowe. (2001). Antioxidant and prooxidant properties of carotenoids. Archives of Biochemistry and Biophysics.385(1):20-27. DOI: 10.1016/j.celrep.2017.09.026.
[63] S.-J. Heo, S.-C. Ko, S.-M. Kang, H.-S. Kang. et al.(2008). Cytoprotective effect of fucoxanthin isolated from brown algae against HO-induced cell damage. European Food Research and Technology.228(1):145-151. DOI: 10.1016/j.celrep.2017.09.026.
[64] J. Yin, W. Ren, X. Wu. (2013). Oxidative stress-mediated signaling pathways: a review. Journal of Food, Agriculture and Environment (JFAE).11(2):132-139. DOI: 10.1016/j.celrep.2017.09.026.
[65] N. M. Sachindra, E. Sato, H. Maeda, M. Hosokawa. et al.(2007). Radical scavenging and singlet oxygen quenching activity of marine carotenoid fucoxanthin and its metabolites. Journal of Agricultural and Food Chemistry.55(21):8516-8522. DOI: 10.1016/j.celrep.2017.09.026.
文献评价指标
浏览 10次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次