首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2018 ,2018-11-01
An Improved Nishihara Model for Frozen Loess considering the Influence of Temperature
Research Article
Xin Li 1 Enlong Liu 1 , 2 Bingtang Song 2 Xingyan Liu 2
Show affiliations
DOI:10.1155/2018/9073435
Received 2018-04-27, accepted for publication 2018-09-25, Published 2018-09-25
PDF
摘要

A series of triaxial creep tests under the constant confining pressure are performed on frozen loess specimens, and the creep behavior of the frozen loess with respect to variations in both temperature and deviator stress is examined. Experimental results illustrate that the frozen loess specimens present the attenuation creep at the lower deviatoric stress, whereas the nonattenuation creep under the higher deviatoric stress level, and with a drop in the temperature, the deviator stress value which the exhibition of nonattenuation creep needs will increase under the constant confining pressure condition. According to the microscopic analysis on deformation characteristics in the creep process of frozen soil, both temperature and external stress will cause the hardening and weakening effects, affecting the creep properties of frozen loess. By introducing the hardening variable and damage variable to consider the hardening and weakening effects of the frozen loess, an improved Nishihara model is proposed. The correlations between model parameters and the temperature as well as deviator stress are determined. The comparisons between model predictions and experimental results show that the improved creep constitutive model proposed here can not only describe the whole creep process well, but also reveal the influences of the temperature and deviator stress on the creep behavior of frozen loess, which demonstrate its accuracy and usefulness.

授权许可

Copyright © 2018 Xin Li et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Axial strain versus time at different temperatures. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

Axial strain versus time at different temperatures. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

Axial strain versus time at different temperatures. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

The illustration of the hardening and weakening curves.

(a) The Nishihara model. (b) The improved Nishihara model.

Comparison between tested results and predicted results. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

Comparison between tested results and predicted results. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

Comparison between tested results and predicted results. (a) T=−15°C. (b) T=−10°C. (c) T=−1.5°C.

Compared result between the improved model and the initial one.

The changes of the hardening variable with temperature and stress.

The changes of the hardening variable with temperature and stress.

The changes of the damage variable with temperature and stress.

The changes of the damage variable with temperature and stress.

通讯作者

Enlong Liu.State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China, scu.edu.cn;State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Institute, Chinese Academy of Sciences, Lanzhou 730000, China, cas.cn.liuenlong@lzb.ac.cn

推荐引用方式

Xin Li,Enlong Liu,Bingtang Song,Xingyan Liu. An Improved Nishihara Model for Frozen Loess considering the Influence of Temperature. Advances in Materials Science and Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] H. Wijeweera, R. C. Joshi. (1993). Creep behavior of saline fine-grained frozen soil. Journal of Cold Regions Engineering.7(3):77-89. DOI: 10.1016/j.coldregions.2011.02.010.
[2] L. U. Arenson, S. M. Springman. (2005). Mathematical descriptions for the behaviour of ice-rich frozen soils at temperatures close to 0°C. Canadian Geotechnical Journal.42(2):431-442. DOI: 10.1016/j.coldregions.2011.02.010.
[3] N. Ogata, M. Yasuda, T. Kataoka. (1983). Effects of salt concentration on strength and creep-behavior of artificially frozen soils. Cold Regions Science and Technology.8(2):139-153. DOI: 10.1016/j.coldregions.2011.02.010.
[4] M. Y. Zhang, W. S. Pei, S. Y. Li, J. Lu. et al.(2017). Experimental and numerical analyses of the thermo-mechanical stability of an embankment with shady and sunny slopes in a permafrost region. Applied Thermal Engineering.127:1478. DOI: 10.1016/j.coldregions.2011.02.010.
[5] H. Wijeweera, R. C. Joshi. (1991). Creep-behavior of fine-grained frozen soils. Canadian Geotechnical Journal.28(4):489-502. DOI: 10.1016/j.coldregions.2011.02.010.
[6] A. M. Fish. (1991). Strength of frozen soil under a combined stress state. Proceedings of 6th International Symposium on Ground Freezing.1(1):135-145. DOI: 10.1016/j.coldregions.2011.02.010.
[7] M. Liingaard, A. Augustesen, P. V. Lade. (2004). Characterization of models for time-dependent behavior of soils. International Journal of Geomechanics.4(3):157-177. DOI: 10.1016/j.coldregions.2011.02.010.
[8] Y. G. Yang, F. Gao, H. M. Cheng. (2014). Researches on the constitutive models of artificial frozen silt in underground engineering. Advances in Materials Science and Engineering.2014-8. DOI: 10.1016/j.coldregions.2011.02.010.
[9] S. S. Vyalov. (2005). Rheology of Forzen Soils. DOI: 10.1016/j.coldregions.2011.02.010.
[10] F. Yu, J. L. Qi, Y. M. Lai. (2016). Typical embankment settlement/heave patterns of the qinghai–tibet highway in permafrost regions: formation and evolution. Engineering Geology.214:147-156. DOI: 10.1016/j.coldregions.2011.02.010.
[11] O. C. Zienkiewicz, I. C. Cormeau. (1974). Visco-plasticity-plasticity and creep in elastic solids-a unified numerical solution approach. International Journal for Numerical Methods in Engineering.8(4):821-845. DOI: 10.1016/j.coldregions.2011.02.010.
[12] Z. Sun, Y. Wang, Y. Sun, F. Niu. et al.(2017). Creep characteristics and process analyses of a thaw slump in the permafrost region of the qinghai-tibet plateau, China. Geomorphology.293:1-10. DOI: 10.1016/j.coldregions.2011.02.010.
[13] A. M. Fish. (1983). Comparison of USSR codes and United-States-Army manual for design of foundations on permafrost. Cold Regions Science and Technology.8(1):3-24. DOI: 10.1016/j.coldregions.2011.02.010.
[14] L. U. Arenson, S. M. Springman, D. C. Sego. (2007). The rheology of frozen soils. Applied Rheology.17(1):12141-12147. DOI: 10.1016/j.coldregions.2011.02.010.
[15] Q. Y. Fan, K. Q. Yang, W. M. Wang. (2010). Study of creep mechanism of argillaceous soft rocks. Chinese Journal of Rock Mechanics and Engineering.29(8):1555-1561. DOI: 10.1016/j.coldregions.2011.02.010.
[16] F. Hou, Y. M. Lai, E. L. Liu. (2018). A creep constitutive model for frozen soils with different contents of coarse grains. Cold Regions Science and Technology.145:119-126. DOI: 10.1016/j.coldregions.2011.02.010.
[17] W. Ma, Y. H. Mu, Q. B. Wu, Z. Sun. et al.(2011). Characteristics and mechanisms of embankment deformation along the qinghai–tibet railway in permafrost regions. Cold Regions Science and Technology.67(3):178-186. DOI: 10.1016/j.coldregions.2011.02.010.
[18] M. Nishihara. (1957). Rheological properties of rocks. Doshisha English Review.83:85-115. DOI: 10.1016/j.coldregions.2011.02.010.
[19] X. D. Zhao, G. Q. Zhou, G. L. Lu. (2017). Strain responses of frozen clay with thermal gradient under triaxial creep. Acta Geotechnica.12(1):183-193. DOI: 10.1016/j.coldregions.2011.02.010.
[20] P. He, Y. L. Zhu, G. D. Cheng. (2000). Constitutive models of frozen soil. Canadian Geotechnical Journal.37(4):811-816. DOI: 10.1016/j.coldregions.2011.02.010.
[21] Z. W. Wu, W. Ma, Y. B. Pu. (1997). Submicroscopic analysis on deformation characteristics in creep process of frozen soil. Chinese Journal of Geotechnical Engineering.3(19):4-9. DOI: 10.1016/j.coldregions.2011.02.010.
文献评价指标
浏览 15次
下载全文 8次
评分次数 0次
用户评分 0.0分
分享 0次