首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2018 ,2018-10-14
Opto-Electrical Properties of Composite Materials Based on Two Benzotrithiophene Copolymers and Fullerene Derivatives
Research Article
N. Radychev 1 M. L. Keshtov 2 H. Borchert 1 Y. Bondarchuk 1 S. A. Kuklin 2 A. Korotaeva 3 Z. Xie 4 D. Godovsky 2 A. R. Khokhlov 2 J. Parisi 1
Show affiliations
DOI:10.1155/2018/4561320
Received 2018-04-19, accepted for publication 2018-08-08, Published 2018-08-08
PDF
摘要

Two donor–acceptor copolymers based on a benzotrithiophene acceptor unit and an electron-donor segment of 4,8-didodecyloxybenzo[1,2-b;4,5-b′]dithiophene were investigated in the view of photovoltaic application. We provided the complete synthesis procedure supported with NMR spectra of the monomers obtained. The resulting copolymers, labeled P1 and P2 in this work, exhibit strong absorption in the visible region with a similar band gap of about 2.2 eV. In spite of the chemical similarity of both copolymers, the photovoltaic and carrier transport properties of the P1- and P2-based devices demonstrated a noticeable difference. Applying an optimization procedure, a power conversion efficiency of 4.6% has been achieved for the P2/PC71BM solar cells.

授权许可

Copyright © 2018 N. Radychev et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Chemical structure of the copolymers P1 and P2.

Tauc plot and normalized absorption (insert) of the thin films based on P1.

Tauc plot and normalized absorption (insert) of the thin films based on P2.

Cyclic voltammograms of P1 (red line) and P2 (black line) thin films recorded at a scan rate of 100 mV/s relative to Fc/Fc+.

Output (a and c) and transfer (b and d) characteristics of thin film transistors based on either P1 (a and b) or P2 (c and d) copolymers.

Output (a and c) and transfer (b and d) characteristics of thin film transistors based on either P1 (a and b) or P2 (c and d) copolymers.

Output (a and c) and transfer (b and d) characteristics of thin film transistors based on either P1 (a and b) or P2 (c and d) copolymers.

Output (a and c) and transfer (b and d) characteristics of thin film transistors based on either P1 (a and b) or P2 (c and d) copolymers.

J-V and EQE characteristics of P2/PC61BM solar cells with different polymer–fullerene weight ratios. Thickness of the active layer is 110 nm.

J-V and EQE characteristics of P2/PC61BM solar cells with different polymer–fullerene weight ratios. Thickness of the active layer is 110 nm.

TEM picture of P2/PC61BM active layers.

J-V and EQE characteristics of P2/PC61BM (black curve) and P2/PC71BM (red curves) solar cells.

J-V and EQE characteristics of P2/PC61BM (black curve) and P2/PC71BM (red curves) solar cells.

TEM picture of the P2/PC71BM active layer.

通讯作者

N. Radychev.University of Oldenburg, Department of Physics, Energy and Semiconductor Research Laboratory, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany, uni-oldenburg.de.nicolay.radychev@uni-oldenburg.de

推荐引用方式

N. Radychev,M. L. Keshtov,H. Borchert,Y. Bondarchuk,S. A. Kuklin,A. Korotaeva,Z. Xie,D. Godovsky,A. R. Khokhlov,J. Parisi. Opto-Electrical Properties of Composite Materials Based on Two Benzotrithiophene Copolymers and Fullerene Derivatives. Journal of Nanomaterials ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] G. Yu, J. Gao, J. C. Hummelen, F. Wudl. et al.(1995). Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science.270(5243):1789-1791. DOI: 10.1063/1.96937.
[2] P. Liu, K. Zhang, F. Liu, Y. Jin. et al.(2014). Effect of fluorine content in thienothiophene-benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chemistry of Materials.26(9):3009-3017. DOI: 10.1063/1.96937.
[3] N. Wang, Z. Chen, W. Wei, Z. Jiang. et al.(2013). American Chemical Society.135(45):17060-17068. DOI: 10.1063/1.96937.
[4] J. Chen, Y. Cao. (2009). Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Accounts of Chemical Research.42(11):1709-1718. DOI: 10.1063/1.96937.
[5] C. W. Tang. (1986). Two‐layer organic photovoltaic cell. Applied Physics Letters.48(2):183-185. DOI: 10.1063/1.96937.
[6] X. Guo, S. R. Puniredd, M. Baumgarten, W. Pisula. et al.(2013). Advanced Materials.25(38):5467-5472. DOI: 10.1063/1.96937.
[7] L. M. Andersson, C. Müller, B. H. Badada, F. Zhang. et al.(2011). Mobility and fill factor correlation in geminate recombination limited solar cells. Journal of Applied Physics.110(2):024509-024507. DOI: 10.1063/1.96937.
[8] J. Zhao, Y. Li, G. Yang, K. Jiang. et al.(2016). Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy.1(2, article 15027). DOI: 10.1063/1.96937.
[9] N. Radychev, I. Lokteva, F. Witt, J. Kolny-Olesiak. et al.(2011). Physical origin of the impact of different nanocrystal surface modifications on the performance of CdSe/P3HT hybrid solar cells. The Journal of Physical Chemistry C.115(29):14111-14122. DOI: 10.1063/1.96937.
[10] H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins. et al.(2015). Polymer homo-tandem solar cells with best efficiency of 11.3
[11] . Advanced Materials.27(10):1767-1773. DOI: 10.1063/1.96937.
[12] P. Morvillo, E. Bobeico, S. Esposito, R. Diana. et al.(2012). Energy Procedia.31:69-73. DOI: 10.1063/1.96937.
[13] G. Zhang, J. Yuan, P. Li, J. Ma. et al.(2013). Benzotrithiophene and benzodithiophene-based polymers for efficient polymer solar cells with high open-circuit voltage. Polymer Chemistry.4(11):3390-3397. DOI: 10.1063/1.96937.
[14] J. D. Kotlarski, D. J. D. Moet, P. W. M. Blom. (2011). Role of balanced charge carrier transport in low band gap polymer : fullerene bulk heterojunction solar cells. Journal of Polymer Science Part B: Polymer Physics.49(10):708-711. DOI: 10.1063/1.96937.
[15] P. P. Khlyabich, B. Burkhart, A. E. Rudenko, B. C. Thompson. et al.(2013). Optimization and simplification of polymer–fullerene solar cells through polymer and active layer design. Polymer.54(20):5267-5298. DOI: 10.1063/1.96937.
[16] S. Bi, Z. Ouyang, S. Shaik, D. Li. et al.(2018). Effect of donor-acceptor vertical composition profile on performance of organic bulk heterojunction solar cells. Scientific Reports.8(1):9574. DOI: 10.1063/1.96937.
[17] P. R. Berger, M. Kim. (2018). Polymer solar cells: P3HT : PCBM and beyond. Journal of Renewable and Sustainable Energy.10(1, article 013508). DOI: 10.1063/1.96937.
[18] C. B. Nielsen, B. C. Schroeder, A. Hadipour, B. P. Rand. et al.(2011). A benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit voltage. Journal of Materials Chemistry.21(44):17642-17645. DOI: 10.1063/1.96937.
[19] M. L. Keshtov, S. A. Kuklin, V. S. Kochurov, N. A. Radychev. et al.(2015). Doklady Chemistry.464(2):231-235. DOI: 10.1063/1.96937.
[20] R. K. Hallani, K. J. Thorley, A. K. Hailey, S. R. Parkin. et al.(2015). The effect of regioisomerism on the crystal packing and device performance of desymmetrized anthradithiophenes. Journal of Materials Chemistry C.3(34):8956-8962. DOI: 10.1063/1.96937.
[21] B. C. Schroeder, S. Rossbauer, R. J. Kline, L. Biniek. et al.(2014). Benzotrithiophene copolymers: influence of molecular packing and energy levels on charge carrier mobility. Macromolecules.47(9):2883-2890. DOI: 10.1063/1.96937.
[22] W. Yi, S. Zhao, H. Sun, Y. Kan. et al.(2015). Isomers of organic semiconductors based on dithienothiophenes: the effect of sulphur atoms positions on the intermolecular interactions and field-effect performances. Journal of Materials Chemistry C.3(41):10856-10861. DOI: 10.1063/1.96937.
[23] G. Horowitz, R. Hajlaoui, D. Fichou, A. el Kassmi. et al.(1999). Gate voltage dependent mobility of oligothiophene field-effect transistors. Journal of Applied Physics.85(6):3202-3206. DOI: 10.1063/1.96937.
[24] A. Molina-Ontoria, I. Zimmermann, I. Garcia-Benito, P. Gratia. et al.(2016). Benzotrithiophene-based hole-transporting materials for 18.2 
[25] perovskite solar cells. Angewandte Chemie, International Edition.55(21):6270-6274. DOI: 10.1063/1.96937.
[26] M.-S. Su, C.-Y. Kuo, M.-C. Yuan, U. S. Jeng. et al.(2011). Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Advanced Materials.23(29):3315-3319. DOI: 10.1063/1.96937.
[27] X. Zhao, D. Yang, H. Lv, L. Yin. et al.(2013). Polymer Chemistry.4(1):57-60. DOI: 10.1063/1.96937.
[28] C. Duan, F. Huang, Y. Cao. (2012). Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. Journal of Materials Chemistry.22(21):10416-10434. DOI: 10.1063/1.96937.
[29] G. P. Smestad, F. C. Krebs, C. M. Lampert, C. G. Granqvist. et al.(2008). Reporting solar cell efficiencies in solar energy materials and solar cells. Solar Energy Materials & Solar Cells.92(4):371-373. DOI: 10.1063/1.96937.
[30] Y. Lin, J. Wang, Z. G. Zhang, H. Bai. et al.(2015). An electron acceptor challenging fullerenes for efficient polymer solar cells. Advanced Materials.27(7):1170-1174. DOI: 10.1063/1.96937.
[31] C. E. Small, S. W. Tsang, S. Chen, S. Baek. et al.(2013). Loss mechanisms in thick-film low-bandgap polymer solar cells. Advanced Energy Materials.3(7):909-916. DOI: 10.1063/1.96937.
[32] M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk. et al.(2006). Design rules for donors in bulk-heterojunction solar cells—towards 10 
[33] energy-conversion efficiency. Advanced Materials.18(6):789-794. DOI: 10.1063/1.96937.
[34] C. B. Nielsen, R. S. Ashraf, N. D. Treat, B. C. Schroeder. et al.(2015). Advanced Materials.27(5):948-953. DOI: 10.1063/1.96937.
[35] S. Li, L. Ye, W. Zhao, S. Zhang. et al.(2016). Energy-level modulation of small-molecule electron acceptors to achieve over 12
[36] efficiency in polymer solar cells. Advanced Materials.28(42):9423-9429. DOI: 10.1063/1.96937.
[37] B. C. Schroeder, C. B. Nielsen, Y. J. Kim, J. Smith. et al.(2011). Chemistry of Materials.23(17):4025-4031. DOI: 10.1063/1.96937.
[38] C. B. Nielsen, R. S. Ashraf, B. C. Schroeder, P. D’Angelo. et al.(2012). Random benzotrithiophene-based donor–acceptor copolymers for efficient organic photovoltaic devices. Chemical Communications.48(47):5832-5834. DOI: 10.1063/1.96937.
[39] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. (2002). Hybrid nanorod-polymer solar cells. Science.295(5564):2425-2427. DOI: 10.1063/1.96937.
[40] J. Subbiah, B. Purushothaman, M. Chen, T. Qin. et al.(2015). Organic solar cells using a high-molecular-weight benzodithiophene-benzothiadiazole copolymer with an efficiency of 9.4
[41] . Advanced Materials.27(4):702-705. DOI: 10.1063/1.96937.
[42] S.-C. Lan, P.-A. Yang, M.-J. Zhu, C.-M. Yu. et al.(2013). Polymer Chemistry.4(4):1132-1140. DOI: 10.1063/1.96937.
[43] Y. Xu, T. Minari, K. Tsukagoshi, J. A. Chroboczek. et al.(2010). Journal of Applied Physics.107(11, article 114507). DOI: 10.1063/1.96937.
[44] S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann. et al.(2009). The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nature Materials.8(10):818-824. DOI: 10.1063/1.96937.
[45] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen. et al.(1999). Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature.401(6754):685-688. DOI: 10.1063/1.96937.
[46] P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland. et al.(2006). P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Solar Energy Materials and Solar Cells.90(14):2150-2158. DOI: 10.1063/1.96937.
[47] A. M. Ballantyne, L. Chen, J. Dane, T. Hammant. et al.(2008). The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells. Advanced Functional Materials.18(16):2373-2380. DOI: 10.1063/1.96937.
[48] F. Todescato, R. Capelli, F. Dinelli, M. Murgia. et al.(2008). Correlation between dielectric/organic interface properties and key electrical parameters in PPV-based OFETs. The Journal of Physical Chemistry B.112(33):10130-10136. DOI: 10.1063/1.96937.
[49] K. Tajima, Y. Suzuki, K. Hashimoto. (2008). Polymer photovoltaic devices using fully regioregular poly[(2-methoxy-5-(3,7-dimethyloctyloxy))-1,4-phenylenevinylene]. Journal of Physical Chemistry C.112(23):8507-8510. DOI: 10.1063/1.96937.
[50] J. Tauc, F. Abeles. (1972). Optical Properties of Solids. DOI: 10.1063/1.96937.
[51] Z. He, B. Xiao, F. Liu, H. Wu. et al.(2015). Single-junction polymer solar cells with high efficiency and photovoltage. Nature Photonics.9(3):174-179. DOI: 10.1063/1.96937.
文献评价指标
浏览 22次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次