首页 » 文章 » 文章详细信息
Evidence-Based Complementray and Alternative Medicine Volume 2018 ,2018-10-09
Investigation on the Antibacterial and Anti-T3SS Activity of Traditional Myanmar Medicinal Plants
Research Article
Tianhong Li 1 Dongdong Zhang 2 , 3 Thaung Naing Oo 4 Myint Myint San 4 Aye Mya Mon 2 , 3 Pyae Phyo Hein 2 , 3 Yuehu Wang 2 Chunhua Lu 1 Xuefei Yang 2 , 3
Show affiliations
DOI:10.1155/2018/2812908
Received 2018-06-29, accepted for publication 2018-09-27, Published 2018-09-27
PDF
摘要

Myanmar has a rich pool of, but less known, medicinal plants with traditional knowledge. In this study, we aimed to investigate the inhibitory activity of traditional Myanmar medicinal plants against the type III secretion system (T3SS) of Salmonella enterica serovar Typhimurium UK-1 χ8956 and the intestinal disease-caused by microbes including S. enterica serovar Typhimurium UK-1 χ8956, Proteusbacillus vulgaris CPCC 160013, Escherichia coli CICC 10003, and Staphylococcus aureus ATCC 25923. The EtOH extracts of 93 samples were used to screen the inhibitory activities against the secretion of T3SS effector proteins SipA/B/C/D of S. enterica and the antibacterial activity against S. enterica, P. vulgaris, E. coli, and S. aureus. Out of 71 crude drugs traditionally used, 18 were proofed to be effective either on the growth inhibition of tested bacteria and/or as inhibitors for the T3SS. The EtOH extracts of five plants, Luvunga scandens (Roxb.) Buch.-Ham. ex Wight & Arn. (My7), Myrica nagi Thunb. (My11), Terminalia citrina Roxb. ex Fleming (My21), Thymus vulgaris L. (My49), and Cinnamomum bejolghota (Buch.-Ham.) Sweet (My104), showed potent inhibitory activities against the secretion of T3SS proteins SipA/B/C/D of S. enterica serovar Typhimurium UK-1 χ 8956. Mansonia gagei J.R.Drumm (My3) and Mesua ferrea (Roxb.) L. (My10) showed strong antibacterial activities against P. vulgaris and S. aureus. This study provided the first scientific evidence of T3SS prohibiting and antibacterial properties for the traditional knowledge in Myanmar of using plants as medicines for treating infections and gastrointestinal disease. Further researches are proposed to discover the active chemical compounds and mechanism of L. scandens (Roxb.) Buch.-Ham. ex Wight & Arn, M. nagi Thunb., T. citrina Roxb. ex Fleming, T. vulgaris L., and C. bejolghota (Buch.-Ham.) Sweet as antivirulence drugs and the potential of M. gagei J.R.Drumm and M. ferrea L. as new broad spectrum plant antibiotics.

授权许可

Copyright © 2018 Tianhong Li et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The screening of the antibacterial activity of crude extract of MTMs. (A) My3 and My10 inhibited the growth of P. vulgaris CPCC 160013. (B) My10, My67, and MY109 inhibited the growth of S. aureus ATCC 25923. (C) The positive dose effects of inhibition on P. vulgaris CPCC 160013 for My10 at three concentrations levels (20, 40, 80 μg), with comparison to positive control (+, Ampicillin, 2 μg) and negative control (-, DMSO, 4 μL). (D). The positive dose effects of inhibition on S. aureus ATCC 25923 for My10 at three concentrations levels (20, 40, and 80 μg), with comparison to positive control (+, Kanamycin, 10 μg), and negative control (-, DMSO, 4 μL).

(a) The inhibitory activities of My7, My11, My21, My49, and My104 (80 μg/mL, respectively) against the secretion of the Salmonella pathogenicity island 1 (SPI-1) effector proteins of S. enterica serovar Typhimurium UK-1χ8956. SipA/B/C/D, SPI-1 effector proteins. (b) The five extracts did not affect the growth of S. enterica serovar Typhimurium UK-1 χ8956 in vitro. DMSO, negative control; Csn-B, positive control (100 μM). FliC, flagellar filament protein; M, marker.

(a) The inhibitory activities of My7, My11, My21, My49, and My104 (80 μg/mL, respectively) against the secretion of the Salmonella pathogenicity island 1 (SPI-1) effector proteins of S. enterica serovar Typhimurium UK-1χ8956. SipA/B/C/D, SPI-1 effector proteins. (b) The five extracts did not affect the growth of S. enterica serovar Typhimurium UK-1 χ8956 in vitro. DMSO, negative control; Csn-B, positive control (100 μM). FliC, flagellar filament protein; M, marker.

Pictures of 18 crude drugs of traditional medicinal plants with antibacterial and anti-T3SS properties.

通讯作者

1. Chunhua Lu.Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China, sdu.edu.cn.ahua0966@sdu.edu.cn
2. Xuefei Yang.Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China, cas.cn;Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw 05282, Myanmar, cas.cn.xuefei@mail.kib.ac.cn

推荐引用方式

Tianhong Li,Dongdong Zhang,Thaung Naing Oo,Myint Myint San,Aye Mya Mon,Pyae Phyo Hein,Yuehu Wang,Chunhua Lu,Xuefei Yang. Investigation on the Antibacterial and Anti-T3SS Activity of Traditional Myanmar Medicinal Plants. Evidence-Based Complementray and Alternative Medicine ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. A. Lone, M. Rahul, R. A. Lone. (2014). In vitro Anti-Oxidant Studies by Using Different Methods and Evaluation of Anti-Microbial Potential of Coptis teeta. Global Journal of Biotechnology & Biochemistry.9(4):99-104. DOI: 10.1016/S1473-3099(13)70318-9.
[2] S. S. Teh, G. C. L. Ee, S. H. Mah. (2017). Evaluation of nitric oxide inhibition effect in LPS-stimulated RAW 264.7 macrophages by phytochemical constituents from Mesua beccariana, Mesua congestiflora, and Mesua ferrea. Medicinal Chemistry Research.26(12):3240-3246. DOI: 10.1016/S1473-3099(13)70318-9.
[3] E. Takahashi, Z. Sultan, S. Shimada, W. W. Aung. et al.(2008). Studies on diarrheagenic Escherichia coli isolated from children with diarrhea in Myanmar. Microbiology and Immunology.52(1):2-8. DOI: 10.1016/S1473-3099(13)70318-9.
[4] A. Z. Moe, P. Paulsen, D. Pichpol, R. Fries. et al.(2017). Prevalence and antimicrobial resistance of salmonella isolates from chicken carcasses in retail markets in yangon, myanmar. Journal of Food Protection.80(6):947-951. DOI: 10.1016/S1473-3099(13)70318-9.
[5] C. K. Rajadurai S. (2015). Phytochemical screening and antimicrobial activity of curcuma longa natural dye. General Medicine: Open Access.03(02). DOI: 10.1016/S1473-3099(13)70318-9.
[6] K. M. Lwin, M. K. T. Lwin. (2015). Medicinal Plant List of Myanmar. DOI: 10.1016/S1473-3099(13)70318-9.
[7] P. S. Negi, G. K. Jayaprakasha, B. S. Jena. (2008). Antibacterial activity of the extracts from the fruit rinds of Garcinia cowa and Garcinia pedunculata against food borne pathogens and spoilage bacteria. LWT - Food Science and Technology.41(10):1857-1861. DOI: 10.1016/S1473-3099(13)70318-9.
[8] Y. Qu, F. Xu, S. Nakamura, H. Matsuda. et al.(2009). Sesquiterpenes from Curcuma comosa. Journal of Natural Medicines.63(1):102-104. DOI: 10.1016/S1473-3099(13)70318-9.
[9] N. Thongon, N. Boonmuen, K. Suksen, P. Wichit. et al.(2017). Selective Estrogen Receptor Modulator (SERM)-like activities of diarylheptanoid, a phytoestrogen from curcuma comosa, in breast cancer cells, pre-osteoblast cells, and rat uterine tissues. Journal of Agricultural and Food Chemistry.65(17):3490-3496. DOI: 10.1016/S1473-3099(13)70318-9.
[10] M. Suresh, P. K. Rath, A. Panneerselvam, D. Dhanasekaran. et al.(2010). Anti-mycobacterial effect of leaf extract of Centella asiatica (Mackinlayaceae). Research Journal of Pharmacy & Technology.3(3):872-876. DOI: 10.1016/S1473-3099(13)70318-9.
[11] T. Matsumoto, S. Nakamura, K. Fujimoto, T. Ohta. et al.(2014). Structure of diarylheptanoids with antiallergic activity from the rhizomes of Curcuma comosa. Journal of Natural Medicines.69(1):142-147. DOI: 10.1016/S1473-3099(13)70318-9.
[12] R. Laxminarayan, A. Duse, C. Wattal. (2013). Antibiotic resistance—the need for global solutions. The Lancet Infectious Diseases.13(12):1057-1098. DOI: 10.1016/S1473-3099(13)70318-9.
[13] J. K. Dzotam, I. K. Simo, G. Bitchagno, I. Celik. et al.(2018). In vitro antibacterial and antibiotic modifying activity of crude extract, fractions and 3',4',7-trihydroxyflavone from Myristica fragrans Houtt against MDR Gram-negative enteric bacteria. BMC Complementary and Alternative Medicine.18(1). DOI: 10.1016/S1473-3099(13)70318-9.
[14] B. U. Reddy. (2010). Enumeration of antibacterial activity of few medicinal plants by bioassay method. E-Journal of Chemistry.7(4):1449-1453. DOI: 10.1016/S1473-3099(13)70318-9.
[15] M. C. Duncan, R. G. Linington, V. Auerbuch. (2012). Chemical inhibitors of the type three secretion system: Disarming bacterial pathogens. Antimicrobial Agents and Chemotherapy.56(11):5433-5441. DOI: 10.1016/S1473-3099(13)70318-9.
[16] T. M. Jurgens, E. G. Frazier, J. M. Schaeffer, T. E. Jones. et al.(1994). Novel nematocidal agents from curcuma comosa. Journal of Natural Products.57(2):230-235. DOI: 10.1016/S1473-3099(13)70318-9.
[17] G. M. Nair, S. Narasimhan, S. Shiburaj, T. K. Abraham. et al.(2005). Antibacterial effects of. Fitoterapia.76(6):585-587. DOI: 10.1016/S1473-3099(13)70318-9.
[18] B. Wannissorn, S. Jarikasem, T. Siriwangchai, S. Thubthimthed. et al.(2005). Antibacterial properties of essential oils from Thai medicinal plants. Fitoterapia.76(2):233-236. DOI: 10.1016/S1473-3099(13)70318-9.
[19] J. Li, C. Lv, W. Sun, Z. Li. et al.(2013). Cytosporone B, an inhibitor of the type III secretion system of Salmonella enterica serovar typhimurium. Antimicrobial Agents and Chemotherapy.57(5):2191-2198. DOI: 10.1016/S1473-3099(13)70318-9.
[20] I. M. S. Eldeen, E. E. Elgorashi, J. Van Staden. (2005). Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. Journal of Ethnopharmacology.102(3):457-464. DOI: 10.1016/S1473-3099(13)70318-9.
[21] J. Weerachayaphorn, A. Chuncharunee, S. Jariyawat, B. Lewchalermwong. et al.(2010). Protection of centrilobular necrosis by Curcuma comosa Roxb. in carbon tetrachloride-induced mice liver injury. Journal of Ethnopharmacology.129(2):254-260. DOI: 10.1016/S1473-3099(13)70318-9.
[22] G. J. Kaur, D. S. Arora. (2009). Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicine.9, article 30. DOI: 10.1016/S1473-3099(13)70318-9.
[23] C. Beyrer, V. Suwanvanichkij, L. C. Mullany, A. K. Richards. et al.(2006). Responding to AIDS, tuberculosis, malaria, and emerging infectious diseases in Burma: Dilemmas of policy and practice. PLoS Medicine.3(10):1733-1740. DOI: 10.1016/S1473-3099(13)70318-9.
[24] S. Intapad, A. Suksamrarn, P. Piyachaturawat. (2009). Enhancement of vascular relaxation in rat aorta by phytoestrogens from Curcuma comosa Roxb. Vascular Pharmacology.51(4):284-290. DOI: 10.1016/S1473-3099(13)70318-9.
[25] G. Schött, S. Liesegang, F. Gaunitz, A. Gleß. et al.(2017). The chemical composition of the pharmacologically active Thymus species, its antibacterial activity against Streptococcus mutans and the antiadherent effects of T. vulgaris on the bacterial colonization of the in situ pellicle. Fitoterapia.121:118-128. DOI: 10.1016/S1473-3099(13)70318-9.
[26] V. Keeratinijakal, S. Kongkiatpaiboon. (2017). Distribution of phytoestrogenic diarylheptanoids and sesquiterpenoids components in Curcuma comosa rhizomes and its related species. Revista Brasileira de Farmacognosia.27(3):290-296. DOI: 10.1016/S1473-3099(13)70318-9.
[27] T. Sornwatana, S. Roytrakul, N. Wetprasit, S. Ratanapo. et al.(2013). Brucin, an antibacterial peptide derived from fruit protein of fructus bruceae, Brucea javanica (L.) Merr. Letters in Applied Microbiology.57(2):129-136. DOI: 10.1016/S1473-3099(13)70318-9.
[28] S. Burapadaja, A. Bunchoo. (1995). Antimicrobial activity of tannins from. Planta Medica.61(4):365-366. DOI: 10.1016/S1473-3099(13)70318-9.
[29] A. Boonmee, C. Srisomsap, A. Karnchanatat, P. Sangvanich. et al.(2011). An antioxidant protein in Curcuma comosa Roxb. Rhizomes. Food Chemistry.124(2):476-480. DOI: 10.1016/S1473-3099(13)70318-9.
[30] A. M. Kauppi, R. Nordfelth, H. Uvell, H. Wolf-Watz. et al.(2003). Targeting bacterial virulence: Inhibitors of type III secretion in Yersinia. Chemistry & Biology.10(3):241-249. DOI: 10.1016/S1473-3099(13)70318-9.
[31] Z. Guo, X. Li, J. Li, X. Yang. et al.(2016). Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications.477(4):998-1004. DOI: 10.1016/S1473-3099(13)70318-9.
[32] K. Kimura, M. Iwatsuki, T. Nagai, A. Matsumoto. et al.(2011). A small-molecule inhibitor of the bacterial type III secretion system protects against in vivo infection with Citrobacter rodentium. The Journal of Antibiotics.64(2):197-203. DOI: 10.1016/S1473-3099(13)70318-9.
[33] P. Keyser, M. Elofsson, S. Rosell, H. Wolf-Watz. et al.(2008). Virulence blockers as alternatives to antibiotics: Type III secretion inhibitors against Gram-negative bacteria. Journal of Internal Medicine.264(1):17-29. DOI: 10.1016/S1473-3099(13)70318-9.
[34] A. Aleem, K. H. Janbaz, M. H. Mehmood, S. Bashir. et al.(2015). Pharmacological studies on antidiarrheal, gut modulatory, bronchodilatory and vasodilatory activities of Myrica nagi. International Journal of Pharmacology.11(8):888-898. DOI: 10.1016/S1473-3099(13)70318-9.
[35] L. Verotta, E. Lovaglio, G. Vidari, P. V. Finzi. et al.(2004). 4-Alkyl- and 4-phenylcoumarins from Mesua ferrea as promising multidrug resistant antibacterials. Phytochemistry.65(21):2867-2879. DOI: 10.1016/S1473-3099(13)70318-9.
[36] J. Li, W. Sun, Z. Guo, C. Lu. et al.(2014). Fusaric acid modulates Type Three Secretion System of Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications.449(4):455-459. DOI: 10.1016/S1473-3099(13)70318-9.
[37] S. C. Garg, R. Jain. (1999). Antifungal activity of luvunga scandens against some keratinophilic fungi. Indian Journal of Pharmaceutical Sciences.61(4):248-249. DOI: 10.1016/S1473-3099(13)70318-9.
[38] M. Baghdadi, F. Al-Abbasi, A. El-Halawany, A. Aseeri. et al.(2018). Anticancer profiling for coumarins and related O-naphthoquinones from mansonia gagei against solid tumor cells in vitro. Molecules.23(5):1020. DOI: 10.1016/S1473-3099(13)70318-9.
[39] A. Latif, A. Razique, R. Sukulb Asadullah, R. Zuberi. et al.(2008). Phytochemical and Physico-chemical study of Coptis teeta Wall.: An effective drug of choice in ocular ailments. European Journal of Integrative Medicine.1:22-23. DOI: 10.1016/S1473-3099(13)70318-9.
[40] A. M. El-Halawany, M. H. Chung, C.-M. Ma, K. Komatsu. et al.(2007). Anti-estrogenic activity of mansorins and mansonones from the heartwood of Mansonia gagei DRUMM. Chemical & Pharmaceutical Bulletin.55(9):1332-1337. DOI: 10.1016/S1473-3099(13)70318-9.
[41] P. Tiew, H. Takayama, M. Kitajima, N. Aimi. et al.(2003). A novel neolignan, mansoxetane, and two new sesquiterpenes, mansonones R and S, from Mansonia gagei. Tetrahedron Letters.44(35):6759-6761. DOI: 10.1016/S1473-3099(13)70318-9.
[42] R. Hairani, R. Mongkol, W. Chavasiri. (2016). Allyl and prenyl ethers of mansonone G, new potential semisynthetic antibacterial agents. Bioorganic & Medicinal Chemistry Letters.26(21):5300-5303. DOI: 10.1016/S1473-3099(13)70318-9.
[43] B. Coburn, I. Sekirov, B. B. Finlay. (2007). Type III secretion systems and disease. Clinical Microbiology Reviews.20(4):535-549. DOI: 10.1016/S1473-3099(13)70318-9.
[44] A. Puhar, P. J. Sansonetti. (2014). Type III secretion system. Current Biology.24(17):R784-R791. DOI: 10.1016/S1473-3099(13)70318-9.
[45] P. Tiew, J. R. Ioset, U. Kokpol, W. Chavasiri. et al.(2003). Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of. Phytotherapy Research.17(2):190-193. DOI: 10.1016/S1473-3099(13)70318-9.
[46] H. Chen, G. Fan, Y. He. (2017). Species evolution and quality evaluation of four Coptis herbal medicinal materials in Southwest China. 3 Biotech.7(1). DOI: 10.1016/S1473-3099(13)70318-9.
[47] H. Wang, Y. Liu. (2010). Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chemistry & Biodiversity.7(1):229-235. DOI: 10.1016/S1473-3099(13)70318-9.
[48] J. Tsai, S. Tsai, W. Chang. (2004). Effect of ethanol extracts of three chinese medicinal plants with laxative properties on ion transport of the rat intestinal epithelia. Japanese Journal of Pharmacology.94(2):162-165. DOI: 10.1016/S1473-3099(13)70318-9.
[49] D. Raahave. (1974). Paper disk-agar diffusion assay of penicillin in the presence of streptomycin.. Antimicrobial Agents and Chemotherapy.6(5):603-605. DOI: 10.1016/S1473-3099(13)70318-9.
[50] X. Feng, D. Yan, K.-J. Zhao, J.-Y. Luo. et al.(2011). Applications of microcalorimetry in the antibacterial activity evaluation of various Rhizoma coptidis. Pharmaceutical Biology.49(4):348-353. DOI: 10.1016/S1473-3099(13)70318-9.
[51] D. Aiello, J. D. Williams, H. Majgier-Baranowska, I. Patel. et al.(2010). Discovery and characterization of inhibitors of Pseudomonas aeruginosa type III secretion. Antimicrobial Agents and Chemotherapy.54(5):1988-1999. DOI: 10.1016/S1473-3099(13)70318-9.
[52] S. S. Teh, G. C. L. Ee, S. H. Mah, Z. Ahmad. et al.(2016). Structure-activity relationship study of secondary metabolites from Mesua beccariana, Mesua ferrea and Mesua congestiflora for anti-cholinesterase activity. Medicinal Chemistry Research.25(5):819-823. DOI: 10.1016/S1473-3099(13)70318-9.
[53] R. Curtiss, S.-Y. Wanda, B. M. Gunn, X. Zhang. et al.(2009). serovar Typhimurium strains with regulated delayed attenuation. Infection and Immunity.77(3):1071-1082. DOI: 10.1016/S1473-3099(13)70318-9.
[54] R. Mazumder, S. G. Dastidar, S. P. Basu, A. Mazumder. et al.(2004). Antibacterial potentiality of Mesua ferrea Linn. flowers. Phytotherapy Research.18(10):824-826. DOI: 10.1016/S1473-3099(13)70318-9.
文献评价指标
浏览 22次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次