首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2018 ,2018-10-11
Nanoindentation Hardness Distribution and Strain Field and Fracture Evolution in Dissimilar Friction Stir-Welded AA 6061-AA 5A06 Aluminum Alloy Joints
Research Article
Guangjian Peng 1 , 2 Yi Ma 1 Jiangjiang Hu 1 Weifeng Jiang 1 Yong Huan 3 Zhitong Chen 4 Taihua Zhang 1
Show affiliations
DOI:10.1155/2018/4873571
Received 2018-08-01, accepted for publication 2018-08-26, Published 2018-08-26
PDF
摘要

Aluminum alloy AA 6061-T651 and 5A06-H112 rolled plates were successfully welded by friction stir welding (FSW) at three rotation speeds of 600, 900, and 1200 rpm with two transverse speeds of 100 and 150 mm/min. Mechanical properties and strain field evolution of FSW AA 6061-AA 5A06 were characterized by the uniaxial tension and digital image correlation (DIC) tests. Furthermore, the hardness distribution map of whole cross section was obtained via the nanoindentation method with 700 indents. Both DIC and nanoindentation results reveal that the heat-affected zone (HAZ) of AA 6061 alloy is the softest area in the weldment, and the fracture happens in this region. The microstructure evolution characterized by electron-backscatter diffraction (EBSD) indicates that the continuous dynamic recrystallization is the primary grain structure evolution in the stirring zone, and the grain refinement helps improve the mechanical properties. Analyses of the micro- and macrofeatures of the fracture surfaces via scanning electron microscopy (SEM) and optical microscope suggest that the increasing of heat input could enlarge the size of HAZ and reduce the slant angle of HAZ and thus lead the fracture angle to decrease and cause the dimples change from inclined ones to normal ones.

授权许可

Copyright © 2018 Guangjian Peng et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

(a) Schematic drawing of the FSW joining process, (b) specific dimensions of the tool, and (c) the locations where tensile, indentation, and EBSD specimens were obtained.

(a) Schematic drawing of the FSW joining process, (b) specific dimensions of the tool, and (c) the locations where tensile, indentation, and EBSD specimens were obtained.

(a) Schematic drawing of the FSW joining process, (b) specific dimensions of the tool, and (c) the locations where tensile, indentation, and EBSD specimens were obtained.

Engineering stress-strain curves of the FSW AA 6061-AA 5A06 specimens as compared to those of base metals AA 6061 and AA 5A06.

The variation of (a) yield strength and (b) ultimate tensile strength with the ratio of rotation speed to welding speed.

The variation of (a) yield strength and (b) ultimate tensile strength with the ratio of rotation speed to welding speed.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

The strain field evolution of the weld region of Sample 1 monitored by DIC.

(a) The cross-sectional view of FSW AA 6061-AA 5A06, and (b) nanoindentation hardness distribution on the cross section.

(a) The cross-sectional view of FSW AA 6061-AA 5A06, and (b) nanoindentation hardness distribution on the cross section.

Typical nanoindentation load-depth curves for different areas of the FSW joint at (a) the AA 6061 side and (b) the 5A06 side.

Typical nanoindentation load-depth curves for different areas of the FSW joint at (a) the AA 6061 side and (b) the 5A06 side.

EBSD grain maps of FSW AA 6061-AA 5A06: (a) 5A06 NZ; (b) 5A06 BM; (c) 6061 NZ; (d) 6061 BM; (e) 6061 NZ-TMAZ.

EBSD grain maps of FSW AA 6061-AA 5A06: (a) 5A06 NZ; (b) 5A06 BM; (c) 6061 NZ; (d) 6061 BM; (e) 6061 NZ-TMAZ.

EBSD grain maps of FSW AA 6061-AA 5A06: (a) 5A06 NZ; (b) 5A06 BM; (c) 6061 NZ; (d) 6061 BM; (e) 6061 NZ-TMAZ.

EBSD grain maps of FSW AA 6061-AA 5A06: (a) 5A06 NZ; (b) 5A06 BM; (c) 6061 NZ; (d) 6061 BM; (e) 6061 NZ-TMAZ.

EBSD grain maps of FSW AA 6061-AA 5A06: (a) 5A06 NZ; (b) 5A06 BM; (c) 6061 NZ; (d) 6061 BM; (e) 6061 NZ-TMAZ.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

Optical macrograph of the side view of fracture surface and the corresponding strain field at the beginning of yielding for (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

SEM fractographs of FSW specimens: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6.

通讯作者

1. Zhitong Chen.Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA, gwu.edu.zhitongchen@gwu.edu
2. Taihua Zhang.College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China, zjut.edu.cn.zhangth@zjut.edu.cn

推荐引用方式

Guangjian Peng,Yi Ma,Jiangjiang Hu,Weifeng Jiang,Yong Huan,Zhitong Chen,Taihua Zhang. Nanoindentation Hardness Distribution and Strain Field and Fracture Evolution in Dissimilar Friction Stir-Welded AA 6061-AA 5A06 Aluminum Alloy Joints. Advances in Materials Science and Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] G. Çam, G. İpekoğlu. (2017). Recent developments in joining of aluminum alloys. International Journal of Advanced Manufacturing Technology.91(5–8):1851-1866. DOI: 10.1016/j.matdes.2013.12.002.
[2] C. He, K. Kitamura, K. Yang, Y. J. Liu. et al.(2017). Very high cycle fatigue crack initiation mechanism in nugget zone of AA 7075 friction stir welded joint. Advances in Materials Science and Engineering.2017-10. DOI: 10.1016/j.matdes.2013.12.002.
[3] R. S. Mishra, Z. Ma. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports.50(1-2):1-78. DOI: 10.1016/j.matdes.2013.12.002.
[4] T. Dursun, C. Soutis. (2014). Recent developments in advanced aircraft aluminium alloys. Materials & Design.56:862-871. DOI: 10.1016/j.matdes.2013.12.002.
[5] P. Cavaliere, R. Nobile, F. Panella, A. Squillace. et al.(2006). Mechanical and microstructural behaviour of 2024–7075 aluminium alloy sheets joined by friction stir welding. International Journal of Machine Tools and Manufacture.46(6):588-594. DOI: 10.1016/j.matdes.2013.12.002.
[6] C. Menzemer, T. Srivatsan. (1999). The effect of environment on fatigue crack growth behavior of aluminum alloy 5456. Materials Science and Engineering: A.271(1-2):188-195. DOI: 10.1016/j.matdes.2013.12.002.
[7] N. Guo, Y. Fu, Y. Wang, Q. Meng. et al.(2017). Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate. Materials & Design.113:273-283. DOI: 10.1016/j.matdes.2013.12.002.
[8] B. B. Wang, F. F. Chen, F. Liu, W. G. Wang. et al.(2017). Enhanced mechanical properties of friction stir welded 5083Al-H19 joints with additional water cooling. Journal of Materials Science & Technology.33(9):1009-1014. DOI: 10.1016/j.matdes.2013.12.002.
[9] Y. Mao, L. Ke, Y. Chen, F. Liu. et al.(2018). Inhomogeneity of microstructure and mechanical properties in the nugget of friction stir welded thick 7075 aluminum alloy joints. Journal of Materials Science & Technology.34(1):228-236. DOI: 10.1016/j.matdes.2013.12.002.
[10] J. C. V. Juarez, G. M. D. Almaraz, R. G. Hernandez, J. J. V. Lopez. et al.(2016). Effect of modified pin profile and process parameters on the friction stir welding of aluminum alloy 6061-T6. Advances in Materials Science and Engineering.2016-9. DOI: 10.1016/j.matdes.2013.12.002.
[11] S. Mironov, T. Onuma, Y. S. Sato, H. Kokawa. et al.(2015). Microstructure evolution during friction-stir welding of AZ31 magnesium alloy. Acta Materialia.100:301-312. DOI: 10.1016/j.matdes.2013.12.002.
[12] R. Kaibyshev, K. Shipilova, F. Musin, Y. Motohashi. et al.(2005). Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Materials Science and Engineering: A.396(1-2):341-351. DOI: 10.1016/j.matdes.2013.12.002.
[13] Y. Ma, J. H. Ye, G. J. Peng, D. H. Wen. et al.(2015). Nanoindentation study of size effect on shear transformation zone size in a Ni-Nb metallic glass. Materials Science and Engineering: A.627:153-160. DOI: 10.1016/j.matdes.2013.12.002.
[14] H. Jamshidi Aval, S. Serajzadeh, N. A. Sakharova, A. H. Kokabi. et al.(2012). A study on microstructures and residual stress distributions in dissimilar friction-stir welding of AA5086–AA6061. Journal of Materials Science.47(14):5428-5437. DOI: 10.1016/j.matdes.2013.12.002.
[15] G. Cam, G. Ipekoglu, H. T. Serindag. (2014). Effects of use of higher strength interlayer and external cooling on properties of friction stir welded AA6061-T6 joints. Science and Technology of Welding and Joining.19(8):715-720. DOI: 10.1016/j.matdes.2013.12.002.
[16] Y. Ma, G. J. Peng, Y. H. Feng, T. H. Zhang. et al.(2016). Nanoindentation investigation on the creep mechanism in metallic glassy films. Materials Science and Engineering: A.651:548-555. DOI: 10.1016/j.matdes.2013.12.002.
[17] Z. Chen, S. Li, L. H. Hihara. (2015). Microstructure, mechanical properties and corrosion of friction stir welded 6061 aluminum alloy. . DOI: 10.1016/j.matdes.2013.12.002.
[18] O. Barooni, M. Abbasi, M. Givi, B. Bagheri. et al.(2017). New method to improve the microstructure and mechanical properties of joint obtained using FSW. International Journal of Advanced Manufacturing Technology.93(9–12):4371-4378. DOI: 10.1016/j.matdes.2013.12.002.
[19] M. Rahmi, M. Abbasi. (2017). Friction stir vibration welding process: modified version of friction stir welding process. International Journal of Advanced Manufacturing Technology.90(1–4):141-151. DOI: 10.1016/j.matdes.2013.12.002.
[20] M. Peel, A. Steuwer, M. Preuss, P. Withers. et al.(2003). Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds. Acta Materialia.51(16):4791-4801. DOI: 10.1016/j.matdes.2013.12.002.
[21] M. Ericsson, R. Sandström. (2003). Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. International Journal of Fatigue.25(12):1379-1387. DOI: 10.1016/j.matdes.2013.12.002.
[22] B. Yang, J. Yan, M. A. Sutton, A. P. Reynolds. et al.(2004). Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds: part I. Metallurgical Studies, Materials Science and Engineering: A.364(1-2):55-65. DOI: 10.1016/j.matdes.2013.12.002.
[23] B. Gibson, D. Lammlein, T. Prater. (2014). Friction stir welding: process, automation, and control. Journal of Manufacturing Processes.16(1):56-73. DOI: 10.1016/j.matdes.2013.12.002.
[24] Z. Chen, S. Li, K. Liu, L. H. Hihara. et al.(2015). A study on the mechanical property and corrosion sensitivity of an AA5086 friction stir welded joint. . DOI: 10.1016/j.matdes.2013.12.002.
[25] A. von Strombeck, G. Cam, J. F. dos Santos, V. Venzke. et al.A comparison between microstructure, properties, and toughness behavior of power beam and friction stir welds in Al-alloys. :12-14. DOI: 10.1016/j.matdes.2013.12.002.
[26] J.-Q. Su, T. Nelson, R. Mishra, M. Mahoney. et al.(2003). Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Materialia.51(3):713-729. DOI: 10.1016/j.matdes.2013.12.002.
[27] K. Elangovan, V. Balasubramanian. (2007). Influences of pin profile and rotational speed of the tool on the formation of friction stir processing zone in AA2219 aluminium alloy. Materials Science and Engineering: A.459(1-2):7-18. DOI: 10.1016/j.matdes.2013.12.002.
[28] M. Mahoney, C. Rhodes, J. Flintoff, W. Bingel. et al.(1998). Properties of friction-stir-welded 7075 T651 aluminum. Metallurgical and Materials Transactions A.29(7):1955-1964. DOI: 10.1016/j.matdes.2013.12.002.
[29] K. A. Hassan, A. Norman, D. Price, P. Prangnell. et al.(2003). Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment. Acta Materialia.51(7):1923-1936. DOI: 10.1016/j.matdes.2013.12.002.
[30] M. A. Gharacheh, A. Kokabi, G. Daneshi, B. Shalchi. et al.(2006). The influence of the ratio of “rotational speed/traverse speed”(ω/v) on mechanical properties of AZ31 friction stir welds. International Journal of Machine Tools and Manufacture.46(15):1983-1987. DOI: 10.1016/j.matdes.2013.12.002.
[31] Z. Chen, S. Li, L. H. Hihara. (2018). Electrochemical and mechanical behaviors of dissimilar friction stir welding between 5086 and 6061 aluminum alloy. . DOI: 10.1016/j.matdes.2013.12.002.
[32] H. Zhang, M. Wang, W. Zhou. (2015). Microstructure–property characteristics of a novel non-weld-thinning friction stir welding process of aluminum alloys. Materials & Design.86:379-387. DOI: 10.1016/j.matdes.2013.12.002.
[33] D. Wadeson, X. Zhou, G. Thompson, P. Skeldon. et al.(2006). Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy. Corrosion Science.48(4):887-897. DOI: 10.1016/j.matdes.2013.12.002.
[34] H. Liu, Y. Zhao, Y. Hu, S. Chen. et al.(2015). Microstructural characteristics and mechanical properties of friction stir lap welding joint of alclad 7B04-T74 aluminum alloy. International Journal of Advanced Manufacturing Technology.78(9–12):1415-1425. DOI: 10.1016/j.matdes.2013.12.002.
[35] Z. Zhang, J. Bie, Y. Liu, H. Zhang. et al.(2008). Effect of traverse/rotational speed on material deformations and temperature distributions in friction stir welding. Journal of Materials Science & Technology.24(6):907-914. DOI: 10.1016/j.matdes.2013.12.002.
[36] J.-R. Kim, E.-Y. Ahn, H. Das. (2017). Effect of tool geometry and process parameters on mechanical properties of friction stir spot welded dissimilar aluminum alloys. International Journal of Precision Engineering and Manufacturing.18(3):445-452. DOI: 10.1016/j.matdes.2013.12.002.
文献评价指标
浏览 31次
下载全文 4次
评分次数 0次
用户评分 0.0分
分享 0次