首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2018 ,2018-09-05
Experimental Study of the Debris Flow Slurry Impact and Distribution
Research Article
Haixin Zhao 1 Lingkan Yao 1 , 2 , 3 Yong You 4 Baoliang Wang 1 Cong Zhang 1
Show affiliations
DOI:10.1155/2018/5460362
Received 2018-03-13, accepted for publication 2018-08-05, Published 2018-08-05
PDF
摘要

In this study, we present a new method to calculate debris flow slurry impact and its distribution, which are critical issues for designing countermeasures against debris flows. There is no unified formula at present, and we usually design preventive engineering according to the uniform distribution of the maximum impact force. For conducting a laboratory flume experiment, we arrange sensors at different positions on a dam and analyze the differences on debris flow slurry impact against various densities, channel slopes, and dam front angles. Results show that the force of debris flow on the dam distributes unevenly, and that the impact force is large in the middle and decreases gradually to the both sides. We systematically analyze the influence factors for the calculation of the maximum impact force in the middle point and give the quantitative law of decay from the middle to the sides. We propose a method to calculate the distribution of the debris flow impact force on the whole section and provide a case to illustrate this method.

授权许可

Copyright © 2018 Haixin Zhao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Lingkan Yao.School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China, swjtu.edu.cn;MOE Key Laboratory of High-Speed Railway Engineering, Chengdu 610031, China;National Engineering Laboratory for Technology of Geological Disaster Prevention in Land Transportation, Chengdu 610031, China.yaolk@swjtu.edu.cn

推荐引用方式

Haixin Zhao,Lingkan Yao,Yong You,Baoliang Wang,Cong Zhang. Experimental Study of the Debris Flow Slurry Impact and Distribution. Shock and Vibration ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. Zanuttigh, A. Lamberti. (2007). Instability and surge development in debris flows. Reviews of Geophysics.45(3). DOI: 10.1016/s0377-0273(03)00409-8.
[2] S. He, W. Liu, X. Li. (2016). Prediction of impact force of debris flows based on distribution and size of particles. Environmental Earth Sciences.75(4):298. DOI: 10.1016/s0377-0273(03)00409-8.
[3] P. R. Tecca, A. M. Deganutti, R. Genevois, A. Galgaro. et al.(2003). Velocity distributions in a coarse debris flow. Debris.2:905-916. DOI: 10.1016/s0377-0273(03)00409-8.
[4] H. X. Zhao, Y. You, J. F. Liu, L. K. Yao. et al.(2017). Superelevation calculation of debris flow climbing ascending slopes. Mathematical Problems in Engineering.2017-9. DOI: 10.1016/s0377-0273(03)00409-8.
[5] Z. Han, G. Chen, Y. Li. (2014). A new approach for analyzing the velocity distribution of debris flows at typical cross-sections. Natural Hazards.74(3):2053-2070. DOI: 10.1016/s0377-0273(03)00409-8.
[6] R. M. Iverson. (1997). The physics of debris flows. Reviews of Geophysics.35(3):245-296. DOI: 10.1016/s0377-0273(03)00409-8.
[7] M. Drago. (2002). A coupled debris flow-turbidity current model. Ocean Engineering.29(14):1769-1780. DOI: 10.1016/s0377-0273(03)00409-8.
[8] S. Zhang. (1993). A comprehensive approach to the observation and prevention of debris flow in China. Natural Hazards.7(1):1-23. DOI: 10.1016/s0377-0273(03)00409-8.
[9] D. J. Li. (1997). Theory and Practice for Hazard Reduction of Debris Flow. DOI: 10.1016/s0377-0273(03)00409-8.
[10] G. Zanchetta, R. Sulpizio, M. T. Pareschi, F. M. Leoni. et al.(2004). Characteristics of May 5-6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. Journal of Volcanology and Geothermal Research.133(1–4):377-393. DOI: 10.1016/s0377-0273(03)00409-8.
[11] O. Hungr, G. C. Morgan, R. Kellerhals. (1984). Quantitative analysis of debris torrent hazards for design of remedial measures. Canadian Geotechnical Journal.21(4):663-667. DOI: 10.1016/s0377-0273(03)00409-8.
[12] Q. Wang, H. E. Si-Ming, J. Y. Zhang. (2009). Theoretical method for calculating impact force on debris flow protection piers. Journal of Disaster Prevention and Mitigation Engineering.29(4):423-427. DOI: 10.1016/s0377-0273(03)00409-8.
[13] T. Mizuyama. (1979). Computational method and some considerations on impulsive force of debris flow acting on Sabo dams. Japan Society of Erosion Control Engineering.112:40-43. DOI: 10.1016/s0377-0273(03)00409-8.
[14] G. X. Chen. (1983). Debris Flow Disaster Prevention. DOI: 10.1016/s0377-0273(03)00409-8.
[15] J. Hübl, G. Holzinger. Entwicklung von Grundlagen zur Dimensionierung kronenoffener Bauwerke für die Geschiebebewirtschaftung in Wildbächen: Kleinmassstäbliche Modellversuche zur Wirkung von Murbrechern. DOI: 10.1016/s0377-0273(03)00409-8.
[16] I. M. Krieger, T. J. Dougherty. (1959). A mechanism for non-newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology.3(1):137-152. DOI: 10.1016/s0377-0273(03)00409-8.
[17] T. Takahashi. (1980). Debris flow on prismatic open channel. Journal of the Hydraulics Division.106(3):381-396. DOI: 10.1016/s0377-0273(03)00409-8.
[18] C. Zeng. (2014). Vulnerability Assessment of Building to Flow Hazard. DOI: 10.1016/s0377-0273(03)00409-8.
[19] M. Mooney. (1951). The viscosity of concentrated suspension of spherical particles. Journal of Colloid Science.6(2):162-170. DOI: 10.1016/s0377-0273(03)00409-8.
[20] M. Watanabe, H. Ikeya. (1981). Investigation and analysis of volcanic mud flows on Mount Sakurajima, Japan. Erosion Sediment Transport Measurement.33:245-256. DOI: 10.1016/s0377-0273(03)00409-8.
[21] T. Takahashi. (1978). Mechanical characteristics of debris flow. Journal of the Hydraulics Division.104(8):1153-1169. DOI: 10.1016/s0377-0273(03)00409-8.
[22] Z. Han, G. Chen, Y. Li, W. Wang. et al.(2015). Exploring the velocity distribution of debris flows: an iteration algorithm based approach for complex cross-sections. Geomorphology.241:72-82. DOI: 10.1016/s0377-0273(03)00409-8.
[23] B. F. Zhou. (1991). Debris-Flow Prevention Guide. DOI: 10.1016/s0377-0273(03)00409-8.
[24] A. Armanini, P. Scotton. On the dynamic impact of a debris flow on structures. :203-210. DOI: 10.1016/s0377-0273(03)00409-8.
[25] S. M. He, X. P. Li, Y. Wu. (2007). Calculation of impact force of outrunner blocks in debrisflow considering elastoplastic deformation. Chinese Journal of Rock Mechanics and Engineering.26(8):1664-1669. DOI: 10.1016/s0377-0273(03)00409-8.
[26] X. J. Fei, A. P. Shu. (2004). Movement Mechanism and Disaster Control for Debris Flow. DOI: 10.1016/s0377-0273(03)00409-8.
[27] H. K. Chen, H. M. Tang, S. F. Wu. (2004). Research on abrasion of debris flow to high-speed drainage structure. Applied Mathematics and Mechanics.25(11):1257-1264. DOI: 10.1016/s0377-0273(03)00409-8.
[28] H. K. Chen, H. M. Tang. (2006). Method to calculate impact force and impact time of two phase debris flow. China Journal of Highway and Transport.3(19):19-23. DOI: 10.1016/s0377-0273(03)00409-8.
文献评价指标
浏览 10次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次