首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2018 ,2018-09-26
Dynamic Characteristics of Air Cycle Machine Rotor System
Research Article
Dongjiang Han 1 Long Hao 1 Jinfu Yang 1
Show affiliations
DOI:10.1155/2018/1257274
Received 2018-04-12, accepted for publication 2018-08-26, Published 2018-08-26
PDF
摘要

Parameters optimization in the critical speed region has the important influence on operational stability of an air cycle machine. Effects of bearing stiffness and unbalanced exciting force on critical speed and response characteristics are investigated by the modal method and harmonic response analysis. Resonance separation phenomenon in the critical speed region is analyzed in detail. When difference exists in the phase of unbalanced exciting force, resonance separation appears in the conical whirling speed region. The characteristics after resonance separation are closely related to the phase difference value and amplitude of unbalanced exciting force. The paper provides theoretical and experimental foundations for resonance separation analysis and also provides data support for dynamic balance and dynamic design of the rotor system.

授权许可

Copyright © 2018 Dongjiang Han et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Dongjiang Han.Institute of Engineering Thermophysics, Chinese Academy of Sciences, 11 Beisihuanxi Road, 100190 Beijing, China, cas.cn.handongjiang@iet.cn

推荐引用方式

Dongjiang Han,Long Hao,Jinfu Yang. Dynamic Characteristics of Air Cycle Machine Rotor System. Shock and Vibration ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Z. Yu, N. Su. (2000). Design and parameter optimization for environmental control system of aircraft avionics pods. Journal of Astronautics.21(5):399-404. DOI: 10.1177/0954406213489084.
[2] A. Hunsberger, J. F. Walton, H. Heshmat. Debris tolerant compliant foil bearings for high-speed turbomachines. . DOI: 10.1177/0954406213489084.
[3] X. J. Xiao, X. G. Yuan, S. L. Zhang. (2008). Experimental investigation of turbine-compressor unit driven by high-speed electric motor. Vacuum & Cryogenics.14(4):208-211. DOI: 10.1177/0954406213489084.
[4] B. Xiao. (2008). Environmental control system for airborne pods. Electro-Mechanical Engineering.24(3):14-16. DOI: 10.1177/0954406213489084.
[5] Y. Hou, H. L. Zhao, C. Z. Chen. (2008). Durability and stability analysis of compliant foil journal bearings with elastic support using different surface treatments. Tribology Transactions.51(2):187-192. DOI: 10.1177/0954406213489084.
[6] H. Heshmat, P. Hermel. (1992). Compliant foil bearing technology and their application to high speed turbomachinery. The 19th Leeds-Lyon Symposium on Thin Film in Tribology-From Micro Meters to Nano Meters:559-575. DOI: 10.1177/0954406213489084.
[7] Z. Y. Qin, Q. K. Han, F. L. Chu. (2014). Analytical model of bolted disk-drum joints and its application to dynamic analysis of jointed rotor. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.228(4):646-663. DOI: 10.1177/0954406213489084.
[8] C. A. Heshmat, D. S. Xu, H. Heshmat. (1999). Analysis of gas lubricated foil thrust bearings using coupled finite element and finite difference methods. Journal of Tribology.122(1):199-204. DOI: 10.1177/0954406213489084.
[9] H. Heshmat. (1993). Role of compliant foil bearings in advancement and development of high-speed turbomachinery. Fluid Engineering Conference of Second ASME Pumping Machinery Symposium.154:359-377. DOI: 10.1177/0954406213489084.
[10] X. J. Xiao, X. G. Yuan. (2005). Research on motor-driven reverse bootstrap air cycle refrigerating system used on aircraft pod. Journal of Beijing University of Aeronautics and Astronautics.31(11):1163-1167. DOI: 10.1177/0954406213489084.
[11] D. Han, J. Yang, C. Chen. (2014). Experimental research on dynamic characteristics of gas-hybrid bearing-flexible rotor system. Journal of Vibroengineering.16(5):2363-2374. DOI: 10.1177/0954406213489084.
[12] S. Morosi, I. F. Santos. (2011). On the modeling of hybrid aerostatic-gas journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology.225(7):641-653. DOI: 10.1177/0954406213489084.
[13] J. Z. Yu, Y. J. Qian, Z. Gao. (1998). Advanced technology in the design of environmental control system for avionics pods. Journal of Beijing University of Aeronautics and Astronautics.24(2):212-215. DOI: 10.1177/0954406213489084.
[14] S. A. Luis, K. Ryu. (2008). Hybrid gas bearings with controlled supply pressure to eliminate rotor vibrations while crossing system critical speeds. Journal of Engineering for Gas Turbines and Power.130(6). DOI: 10.1177/0954406213489084.
[15] C. Chen, J. F. Yang, J. W. Lou. Experimental study on nonlinear dynamics characteristics of high-speed rotor-gas lubrication bearing system. :941-946. DOI: 10.1177/0954406213489084.
[16] K. Czołczyński, K. Marynowski. (1996). Stability of symmetrical rotor supported in flexibly mounted, self-acting gas journal bearings. Wear.194(1-2):190-197. DOI: 10.1177/0954406213489084.
文献评价指标
浏览 31次
下载全文 15次
评分次数 0次
用户评分 0.0分
分享 0次