首页 » 文章 » 文章详细信息
Computational and Mathematical Methods in Medicine Volume 2018 ,2018-09-30
Classification of Gait Patterns in Patients with Neurodegenerative Disease Using Adaptive Neuro-Fuzzy Inference System
Research Article
Qiang Ye 1 Yi Xia 2 Zhiming Yao 3
Show affiliations
DOI:10.1155/2018/9831252
Received 2018-05-14, accepted for publication 2018-08-29, Published 2018-08-29
PDF
摘要

A common feature that is typical of the patients with neurodegenerative (ND) disease is the impairment of motor function, which can interrupt the pathway from cerebrum to the muscle and thus cause movement disorders. For patients with amyotrophic lateral sclerosis disease (ALS), the impairment is caused by the loss of motor neurons. While for patients with Parkinson’s disease (PD) and Huntington’s disease (HD), it is related to the basal ganglia dysfunction. Previously studies have demonstrated the usage of gait analysis in characterizing the ND patients for the purpose of disease management. However, most studies focus on extracting characteristic features that can differentiate ND gait from normal gait. Few studies have demonstrated the feasibility of modelling the nonlinear gait dynamics in characterizing the ND gait. Therefore, in this study, a novel approach based on an adaptive neuro-fuzzy inference system (ANFIS) is presented for identification of the gait of patients with ND disease. The proposed ANFIS model combines neural network adaptive capabilities and the fuzzy logic qualitative approach. Gait dynamics such as stride intervals, stance intervals, and double support intervals were used as the input variables to the model. The particle swarm optimization (PSO) algorithm was utilized to learn the parameters of the ANFIS model. The performance of the system was evaluated in terms of sensitivity, specificity, and accuracy using the leave-one-out cross-validation method. The competitive classification results on a dataset of 13 ALS patients, 15 PD patients, 20 HD patients, and 16 healthy control subjects indicated the effectiveness of our approach in representing the gait characteristics of ND patients.

授权许可

Copyright © 2018 Qiang Ye et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yi Xia.School of Electrical Engineering and Automation, Anhui University, Hefei 230601, China, ahu.edu.cn.xiayi@ustc.edu

推荐引用方式

Qiang Ye,Yi Xia,Zhiming Yao. Classification of Gait Patterns in Patients with Neurodegenerative Disease Using Adaptive Neuro-Fuzzy Inference System. Computational and Mathematical Methods in Medicine ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Wu, S. Krishnan. (2010). Statistical analysis of gait rhythm in patients with Parkinson’s disease. IEEE Transactions on Neural Systems and Rehabilitation Engineering.18(2):150-158. DOI: 10.1007/s11517-009-0527-z.
[2] Y. Wu, S. Krishnan. (2009). Computer-aided analysis of gait rhythm fluctuations in amyotrophic lateral sclerosis. Medical and Biological Engineering & Computing.47:1165-1171. DOI: 10.1007/s11517-009-0527-z.
[3] N. Stergiou, L. M. Decker. (2011). Human movement variability, nonlinear dynamics, and pathology: is there a connection?. Human Movement Science.30(5):869-888. DOI: 10.1007/s11517-009-0527-z.
[4] E. Baratin, L. Sugavaneswaran, K. Umapathy, C. Ioana. et al.(2015). Wavelet-based characterization of gait signal for neurological abnormalities. Gait Posture.41(2):634-639. DOI: 10.1007/s11517-009-0527-z.
[5] I. Shoulson, S. Fahn. (1979). Huntington disease: clinical care and evaluation. Neurology.29(1):1. DOI: 10.1007/s11517-009-0527-z.
[6] J. Catalão, H. Pousinho, V. Mendes. (2011). Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Transactions on Power Systems.26(1):137-144. DOI: 10.1007/s11517-009-0527-z.
[7] M. Buragohain, C. Mahanta. (2008). A novel approach for ANFIS modelling based on full factorial design. Applied Soft Computing.8(1):609-625. DOI: 10.1007/s11517-009-0527-z.
[8] F. Liao, J. Wang, P. He. (2008). Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Medical Engineering & Physics.30(3):299-310. DOI: 10.1007/s11517-009-0527-z.
[9] P. Gorgel, A. Sertbas, O. N. Ucan. A fuzzy inference system combined with wavelet transform for breast mass classification. :644-647. DOI: 10.1007/s11517-009-0527-z.
[10] Y. Wu, L. Shi. (2011). Analysis of altered gait cycle duration in amyotrophic lateral sclerosis based on nonparametric probability density function estimation. Medical Engineering & Physics.33(3):347-355. DOI: 10.1007/s11517-009-0527-z.
[11] J. S. R. Jang. (1992). Self-learning fuzzy controllers based on temporal backpropagation. IEEE Transactions on Neural Networks.3(5):714-723. DOI: 10.1007/s11517-009-0527-z.
[12] R. C. Wagenaar, R. E. A. van Emmerik. (1996). Dynamics of movement disorders. Human Movement Science.15(2):161-175. DOI: 10.1007/s11517-009-0527-z.
[13] J. S. R. Jang. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics.23(3):665-685. DOI: 10.1007/s11517-009-0527-z.
[14] J. M. Hausdorff, M. E. Cudkowicz, R. Firtion, J. Y. Wei. et al.(1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in parkinson’s disease and Huntington’s disease. Movement Disorders.13(3):428-437. DOI: 10.1007/s11517-009-0527-z.
[15] M. A. Shoorehdeli, M. Teshnehlab, A. K. Sedigh, M. A. Khanesar. et al.(2009). Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Applied Soft Computing.9(2):833-850. DOI: 10.1007/s11517-009-0527-z.
[16] J. Kennedy, R. Eberhart. Particle swarm optimization. :1942-1948. DOI: 10.1007/s11517-009-0527-z.
[17] B. Nefussy, V. E. Drory. (2010). Moving toward a predictive and personalized clinical approach in amyotrophic lateral sclerosis: novel developments and future directions in diagnosis, genetics, pathogenesis and therapies. EPMA Journal.1(2):329-341. DOI: 10.1007/s11517-009-0527-z.
[18] N. Todorovic, P. Klan. State of the art in nonlinear dynamical system identification using artificial neural networks. :103-108. DOI: 10.1007/s11517-009-0527-z.
[19] M. M. Hoehn, M. D. Yahr. (1998). Parkinsonism: onset, progression and mortality. Neurology.50(2):11-26. DOI: 10.1007/s11517-009-0527-z.
[20] L. Xue, J. Yin, Z. Ji, L. Jiang. et al.A particle swarm optimization for hidden Markov model training. :16-20. DOI: 10.1007/s11517-009-0527-z.
[21] B. Goldfarb, S. Simon. (1984). Gait patterns in patients with amyotrophic lateral sclerosis. Archives of Physical Medicine and Rehabilitation.65:61-65. DOI: 10.1007/s11517-009-0527-z.
[22] Y. Xia, Q. Gao, Q. Ye. (2015). Classification of gait rhythm signals between patients with neuro-degenerative diseases and normal subjects: Experiments with statistical features and different classification models. Biomed. Signal. Proces..18:254-262. DOI: 10.1007/s11517-009-0527-z.
[23] W. Zeng, C. Wang. (2015). Classification of neurodegenerative diseases using gait dynamics via deterministic learning. Information Sciences.317:246-258. DOI: 10.1007/s11517-009-0527-z.
[24] E. D. Übeyli. (2010). Automatic diagnosis of diabetes using adaptive neuro‐fuzzy inference systems. Expert Systems.27(4):259-266. DOI: 10.1007/s11517-009-0527-z.
[25] H. Chaoui, P. Sicard. (2012). Adaptive fuzzy logic control of permanent magnet synchronous machines with nonlinear friction. IEEE Transactions on Industrial Electronics.59(2):1123-1133. DOI: 10.1007/s11517-009-0527-z.
[26] C. Gómez, R. Hornero, D. Abásolo, A. Fernández. et al.(2009). Analysis of MEG background activity in Alzheimer’s disease using nonlinear methods and ANFIS. Annals of Biomedical Engineering.37(3):586-594. DOI: 10.1007/s11517-009-0527-z.
[27] J. M. Hausdorff, A. Lertratanakul, M. E. Cudkowicz, A. L. Peterson. et al.(2000). Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. Journal of Applied Physiology.88(6):2045-2053. DOI: 10.1007/s11517-009-0527-z.
[28] W. Yu, X. Li. (2004). Fuzzy identification using fuzzy neural networks with stable learning algorithms. IEEE Transactions on Fuzzy Systems.12(3):411-420. DOI: 10.1007/s11517-009-0527-z.
[29] B. Vasumathi, S. Moorthi. (2012). Implementation of hybrid ANN–PSO algorithm on FPGA for harmonic estimation. Engineering Applications of Artificial Intelligence.25(3):476-483. DOI: 10.1007/s11517-009-0527-z.
[30] M. R. Daliri. (2012). Automatic diagnosis of neuro-degenerative diseases using gait dynamics. Measurement.45(7):1729-1734. DOI: 10.1007/s11517-009-0527-z.
文献评价指标
浏览 75次
下载全文 3次
评分次数 0次
用户评分 0.0分
分享 0次