首页 » 文章 » 文章详细信息
Active and Passive Electronic Components Volume 2018 ,2018-10-01
Architecture Characteristics and Technical Trends of UHF RFID Temperature Sensor Chip
Review Article
Guofeng Zhang 1 , 2 Dehua Wu 1 , 2 Jingdun Jia 1 , 2 Wanlin Gao 1 , 2 Qiang Cai 3 Wan’ang Xiao 4 , 5 Lina Yu 4 , 5 Sha Tao 1 , 2 Qi Chu 1 , 2
Show affiliations
DOI:10.1155/2018/9343241
Received 2018-05-29, accepted for publication 2018-09-03, Published 2018-09-03
PDF
摘要

The integration of temperature sensor (TS) and UHF RFID technology has attracted wide attention theoretically and experimentally. The architecture, power consumption, temperature measurement range, accuracy, and communication distance are key indicators of the performance of UHF RFID temperature sensor chip (RID-TSC). This work aims to provide a clearer view of the development of UHF RFID-TSC integration technology. After a systematic analysis of the characteristics of ADC, TDC, and FDC used in an integrated TS, the key low-power technologies under different architectures are summarized. Through the observation of the latest researches and commercial products, the development trend of UHF RFID-TSC technology is obtained, including on-chip and off-chip coordination, multiprotocol and multifrequency support, passive wireless sensor intelligence, miniaturization, and concealment.

授权许可

Copyright © 2018 Guofeng Zhang et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Wanlin Gao.College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China, cau.edu.cn;Key Laboratory of Agricultural Informatization Standardization, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China, cau.edu.cn.wanlin_cau@163.com

推荐引用方式

Guofeng Zhang,Dehua Wu,Jingdun Jia,Wanlin Gao,Qiang Cai,Wan’ang Xiao,Lina Yu,Sha Tao,Qi Chu. Architecture Characteristics and Technical Trends of UHF RFID Temperature Sensor Chip. Active and Passive Electronic Components ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] K.-S. Lee, J.-H. Chun, K.-W. Kwon. (2010). A low power CMOS compatible embedded EEPROM for passive RFID tag. Microelectronics Journal.41(10):662-668. DOI: 10.1016/0250-6874(88)87002-1.
[2] R. Fang, X. Wanjing, L. Fan. (2017). Research Progress of IC Temperature Sensors. Microelectronics.47(1):110-113. DOI: 10.1016/0250-6874(88)87002-1.
[3] Y. Du, Y. Zhuang, X. Li, W. Liu. et al.(2013). An ultra low-power solution for EEPROM in passive UHF RFID tag IC with a novel read circuit and a time-divided charge pump. IEEE Transactions on Circuits and Systems I: Regular Papers.60(8):2177-2186. DOI: 10.1016/0250-6874(88)87002-1.
[4] A. E. Abdulhadi, R. Abhari. (2016). Multiport UHF RFID-Tag Antenna for Enhanced Energy Harvesting of Self-Powered Wireless Sensors. IEEE Transactions on Industrial Informatics.12(2):801-808. DOI: 10.1016/0250-6874(88)87002-1.
[5] H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata. et al.(2007). A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-m technology. IEEE Journal of Solid-State Circuits.42(1):101-109. DOI: 10.1016/0250-6874(88)87002-1.
[6] Z. Shenghua, W. Nanjian. A novel ultra low power temperature sensor for UHF RFID tag chip. :464-467. DOI: 10.1016/0250-6874(88)87002-1.
[7] B. Wang, M.-K. Law, A. Bermak, H. C. Luong. et al.(2014). A passive RFID tag embedded temperature sensor with improved process spreads immunity for a -30°C to 60°C sensing range. IEEE Transactions on Circuits and Systems I: Regular Papers.61(2):337-346. DOI: 10.1016/0250-6874(88)87002-1.
[8] J. Gao, J. Siden, H.-E. Nilsson, M. Gulliksson. et al.(2013). Printed humidity sensor with memory functionality for passive RFID tags. IEEE Sensors Journal.13(5):1824-1834. DOI: 10.1016/0250-6874(88)87002-1.
[9] J. Yin, J. Yi, M. K. Law, Y. Ling. et al.(2010). A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE Journal of Solid-State Circuits.45(11):2404-2420. DOI: 10.1016/0250-6874(88)87002-1.
[10] K. Woo, S. Meninger, T. Xanthopoulos, E. Crain. et al.Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring. :68-69. DOI: 10.1016/0250-6874(88)87002-1.
[11] L. B. Campos, C. E. Cugnasca. Applications of RFID and WSNs technologies to internet of things. :19-21. DOI: 10.1016/0250-6874(88)87002-1.
[12] L. Catarinucci, R. Colella, L. Tarricone. (2013). Enhanced UHF RFID sensor-tag. IEEE Microwave and Wireless Components Letters.23(1):49-51. DOI: 10.1016/0250-6874(88)87002-1.
[13] H. Chen, J. Weiping. (2016). A Novel High Precision Temperature Sensor for Passive RFID Applications. Microelectronics.46(2):239-246. DOI: 10.1016/0250-6874(88)87002-1.
[14] R. S. Nair, E. Perret, S. Tedjini, T. Baron. et al.(2013). A group-delay-based chipless RFID humidity tag sensor using silicon nanowires. IEEE Antennas and Wireless Propagation Letters.12(8):729-732. DOI: 10.1016/0250-6874(88)87002-1.
[15] M. K. Law, A. Bermak. (2009). A 405-nW CMOS temperature sensor based on linear MOS operation. IEEE Transactions on Circuits and Systems II: Express Briefs.56(12):891-895. DOI: 10.1016/0250-6874(88)87002-1.
[16] E. Fernández, A. Beriain, H. Solar, I. Rebollo. et al.(2012). A low power voltage limiter for a full passive UHF RFID sensor on a 0.35 m CMOS process. Microelectronics Journal.43(10):708-713. DOI: 10.1016/0250-6874(88)87002-1.
[17] J. Virtanen, L. Ukkonen, T. Bjorninen, L. Sydanheimo. et al.Temperature sensor tag for passive UHF RFID systems. :312-317. DOI: 10.1016/0250-6874(88)87002-1.
[18] H. Zhang, L. Mao, Q. Wang, S. Xie. et al.(2011). A new CMOS temperature sensor entegrated in the passive UHF RFID tag. Chinese Journal of Sensors and Actuators.24(11):1526-1531. DOI: 10.1016/0250-6874(88)87002-1.
[19] J. Zhan, S. Xie, K. Guan, L. Mao. et al.(2013). Design and verification of passive UHF RFID tag with integrated temperature sensor. Chinese Journal of Sensors and Actuators.26(12):1710-1714. DOI: 10.1016/0250-6874(88)87002-1.
[20] D. De Donno, L. Catarinucci, L. Tarricone. (2014). RAMSES: RFID augmented module for smart environmental sensing. IEEE Transactions on Instrumentation and Measurement.63(7):1701-1708. DOI: 10.1016/0250-6874(88)87002-1.
[21] D. De Donno, L. Catarinucci, L. Tarricone. (2014). A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks. IEEE Sensors Journal.14(4):1048-1055. DOI: 10.1016/0250-6874(88)87002-1.
[22] S.-M. Yu, P. Feng, N.-J. Wu. (2015). Passive and semi-passive wireless temperature and humidity sensors based on EPC generation-2 UHF protocol. IEEE Sensors Journal.15(4):2403-2411. DOI: 10.1016/0250-6874(88)87002-1.
[23] R. Bhattacharyya, C. Floerkemeier, S. Sarma. Towards tag antenna based sensing—an RFID displacement sensor. :95-102. DOI: 10.1016/0250-6874(88)87002-1.
[24] C. P. L. van Vroonhoven, D. d'Aquino, K. A. A. Makinwa. A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°C (3s) from -55°C to 125°C. :314-315. DOI: 10.1016/0250-6874(88)87002-1.
[25] M. Zurita, R. C. S. Freire, S. Tedjini, S. A. Moshkalev. et al.(2016). A review of implementing ADC in RFID sensor. Journal of Sensors.2016-14. DOI: 10.1016/0250-6874(88)87002-1.
[26] P. Chen, C.-C. Chen, C.-C. Tsai, W.-F. Lu. et al.(2005). A time-to-digital-converter-based CMOS smart temperature sensor. IEEE Journal of Solid-State Circuits.40(8):1642-1648. DOI: 10.1016/0250-6874(88)87002-1.
[27] S. Zhou, L. Mao, Q. Wang, S. Zhang. et al.(2013). An ultra low power CMOS temperature sensor integrated in passive UHF RFID tag. Chinese Journal of Sensors and Actuators.26(7):940-945. DOI: 10.1016/0250-6874(88)87002-1.
[28] Z. Qi, Y. Zhuang, X. Li, W. Liu. et al.(2014). Full passive UHF RFID Tag with an ultra-low power, small area, high resolution temperature sensor suitable for environment monitoring. Microelectronics Journal.45(1):126-131. DOI: 10.1016/0250-6874(88)87002-1.
[29] P. Chen, C.-C. Chen, T.-K. Chen, S.-W. Chen. et al.A time domain mixed-mode temperature sensor with digital set-point programming. :821-824. DOI: 10.1016/0250-6874(88)87002-1.
[30] C. Occhiuzzi, S. Caizzone, G. Marrocco. (2013). Passive UHF RFID antennas for sensing applications: principles, methods, and classifcations. IEEE Antennas and Propagation Magazine.55(6):14-34. DOI: 10.1016/0250-6874(88)87002-1.
[31] X. Wu, F.-M. Deng, Y.-G. He. (2017). Design of ultra-low power consumption CMOS temperature sensor applied in RFD. Transducer and Microsystem Technologies.35(2):106-108. DOI: 10.1016/0250-6874(88)87002-1.
[32] X. Conghui, G. Peijun, C. Wenyi, T. Xi. et al.(2009). An ultra-low-power CMOS temperature sensor for RFID applications. Journal of Semiconductors.30(4):82-85. DOI: 10.1016/0250-6874(88)87002-1.
[33] H. Reinisch, M. Wiessflecker, S. Gruber, H. Unterassinger. et al.(2011). A multifrequency passive sensing tag with on-chip temperature sensor and off-chip sensor interface using EPC HF and UHF RFID technology. IEEE Journal of Solid-State Circuits.46(12):3075-3088. DOI: 10.1016/0250-6874(88)87002-1.
[34] D. Brenk, J. Essel, J. Heidrich, R. Agethen. et al.(2011). Energy-efficient wireless sensing using a generic ADC sensor interface within a passive multi-standard RFID transponder. IEEE Sensors Journal.11(11):2698-2710. DOI: 10.1016/0250-6874(88)87002-1.
[35] B. Li, L. Mao, S. Zhang, S. Xie. et al.(2014). An wide temperature measuring range CMOS temperature sensor integrated in passive UHF RFID tag. Chinese Journal of Sensors and Actuators.27(5):581-586. DOI: 10.1016/0250-6874(88)87002-1.
[36] L. Wang, F.-M. Deng, X. WU. (2017). Design of an integrated temperature sensor for RFID application tag. Transducer and Microsystem Technologies.36(6):102-104. DOI: 10.1016/0250-6874(88)87002-1.
[37] S. Park, C. Min, S. Cho. A 95nW ring oscillator-based temperature sensor for RFID tags in 0.13m CMOS. :1153-1156. DOI: 10.1016/0250-6874(88)87002-1.
[38] Y.-S. Lin, D. Sylvester, D. Blaauw. An ultra low power 1V, 220nW temperature sensor for passive wireless applications. :507-510. DOI: 10.1016/0250-6874(88)87002-1.
[39] . DOI: 10.1016/0250-6874(88)87002-1.
[40] R. Dastanian, E. Abiri, M. Ataiyan. A 0.5 V, 112 nW CMOS temperature sensor for RFID food monitoring application. :1433-1438. DOI: 10.1016/0250-6874(88)87002-1.
[41] K. Kim, H. Lee, S. Jung, C. Kim. et al.366-kS/s 1.09-nJ 0.0013-mm Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock. :203-206. DOI: 10.1016/0250-6874(88)87002-1.
[42] S. Hwang, J. Koo, K. Kim, H. Lee. et al.(2013). A 0.008 mm2 500 w 469 kS/s frequency-to-digital converter based CMOS temperature sensor with process variation compensation. IEEE Transactions on Circuits and Systems I: Regular Papers.60(9):2241-2248. DOI: 10.1016/0250-6874(88)87002-1.
[43] . DOI: 10.1016/0250-6874(88)87002-1.
[44] J.-H. Lee, J.-H. Kim, G.-H. Lim, T.-H. Kim. et al.(2008). Low-power 512-bit EEPROM designed for UHF RFID tag chip. ETRI Journal.30(3):347-354. DOI: 10.1016/0250-6874(88)87002-1.
[45] M. K. Law, A. Bermak, H. C. Luong. (2010). A sub-W embedded CMOS temperature sensor for RFID food monitoring application. IEEE Journal of Solid-State Circuits.45(6):1246-1255. DOI: 10.1016/0250-6874(88)87002-1.
[46] J. P. Shen, X. A. Wang, S. Liu, H. Zong. et al.(2012). Design and implementation of an ultra-low power passive UHF RFID tag. Journal of Semiconductors.33(11):115011. DOI: 10.1016/0250-6874(88)87002-1.
[47] A. Vaz, A. Ubarretxena, I. Zalbide, D. Pardo. et al.(2010). Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Transactions on Circuits and Systems II: Express Briefs.57(2):95-99. DOI: 10.1016/0250-6874(88)87002-1.
[48] . DOI: 10.1016/0250-6874(88)87002-1.
[49] . DOI: 10.1016/0250-6874(88)87002-1.
[50] L. Dong-Sheng, Z. Xue-Cheng, Z. Fan. (2006). Embeded EEPROM Memory Achieving Lower Power - New design of EEPROM memory for RFID tag IC. IEEE Circuits and Devices Magazine.22(6):53-59. DOI: 10.1016/0250-6874(88)87002-1.
[51] . DOI: 10.1016/0250-6874(88)87002-1.
[52] . DOI: 10.1016/0250-6874(88)87002-1.
[53] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing. et al.(2013). Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (±3) from -70°C to 130°C. IEEE Sensors Journal.13(5):1840-1848. DOI: 10.1016/0250-6874(88)87002-1.
[54] W. F. Liu, Y Zhuang, Q. Zeng-Wei. (2013). Design of UHF RFID Tag Integrated With temperature sensor. Journal of Circuits and Systems.18(1):336-342. DOI: 10.1016/0250-6874(88)87002-1.
[55] K. Souri, K. Makinwa. A 0.12mm2 7.4W micropower temperature sensor with an inaccuracy of ±0.2°C (3) from -30°C to 125°C. :282-285. DOI: 10.1016/0250-6874(88)87002-1.
[56] . DOI: 10.1016/0250-6874(88)87002-1.
[57] C. Chen. (2010). Design of a child localization system on RFID and wireless sensor networks. Journal of Sensors:23-59. DOI: 10.1016/0250-6874(88)87002-1.
[58] . DOI: 10.1016/0250-6874(88)87002-1.
[59] J. Zaid, A. Abdulhadi, A. Kesavan, Y. Belaizi. et al.(2017). Multiport circular polarized RFID-tag antenna for UHF sensor applications. Sensors.17(7):1576. DOI: 10.1016/0250-6874(88)87002-1.
[60] K. Souri, Y. Chae, K. A. A. Makinwa. (2013). A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3) from -55°C to 125°C. IEEE Journal of Solid-State Circuits.48(1):292-301. DOI: 10.1016/0250-6874(88)87002-1.
[61] D. D. Donno, L. Catarinucci, L. Tarricone. Enabling self-powered autonomous wireless sensors with new-generation I2C-RFID chips. :1-4. DOI: 10.1016/0250-6874(88)87002-1.
[62] S. Kim, Y. Kawahara, A. Georgiadis, A. Collado. et al.(2015). Low-cost inkjet-printed fully passive RFID tags for calibration-free capacitive/haptic sensor applications. IEEE Sensors Journal.15(6):3135-3145. DOI: 10.1016/0250-6874(88)87002-1.
[63] X. Chen, J. Yu, Y. Yao, C. Wang. et al.(2014). RFID Technology and Applications. International Journal of Antennas and Propagation.2014-1. DOI: 10.1016/0250-6874(88)87002-1.
[64] . DOI: 10.1016/0250-6874(88)87002-1.
[65] S. Middelhoek, P. J. French, J. H. Huijsing, W. J. Lian. et al.(1988). Sensors with digital or frequency output. Sensors and Actuators.15(2):119-133. DOI: 10.1016/0250-6874(88)87002-1.
文献评价指标
浏览 90次
下载全文 8次
评分次数 0次
用户评分 0.0分
分享 0次