首页 » 文章 » 文章详细信息
Advances in Astronomy Volume 2018 ,2018-08-01
High-Precision Heading Determination Based on the Sun for Mars Rover
Research Article
Yinhu Zhan 1 , 2 Shaojie Chen 2 , 3 Donghan He 2
Show affiliations
DOI:10.1155/2018/1493954
Received 2018-03-16, accepted for publication 2018-06-27, Published 2018-06-27
PDF
摘要

Since the American Mars Exploration Rover Opportunity landed on Mars in 2004, it has travelled more than 40 km, and heading-determination technology based on its sun sensor has played an important role in safe driving of the rover. A high-precision heading-determination method will always play a significant role in the rover’s autonomous navigation system, and the precision of the measured heading strongly affects the navigation results. In order to improve the heading precision to the 1-arcminute level, this paper puts forward a novel calibration algorithm for solving the comparable distortion of large-field sun sensor by introducing an antisymmetric matrix. The sun sensor and inclinometer alignment model are then described in detail to maintain a high-precision horizon datum, and a strict sun image centroid-extraction algorithm combining subpixel edge detection with circle or ellipse fitting is presented. A prototype comprising a sun sensor, electronic inclinometer, and chip-scale atomic clock is developed for testing the algorithms, models, and methods presented in this paper. Three field tests were conducted in different months during 2017. The results show that the precision of the heading determination reaches 0.28–0.97′ (1σ) and the centroid error of the sun image and the sun elevation are major factors that affect the heading precision.

授权许可

Copyright © 2018 Yinhu Zhan et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Shaojie Chen.Zhengzhou Institute of Surveying and Mapping, Zhengzhou, China;National Time Service Center, Chinese Academy of Sciences, Xian, China, cas.cn.867347382@qq.com

推荐引用方式

Yinhu Zhan,Shaojie Chen,Donghan He. High-Precision Heading Determination Based on the Sun for Mars Rover. Advances in Astronomy ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Ilyas, K. Cho, S. H. Baeg, S. Park. et al.Absolute Navigation Information Estimation for Planetary Rovers. :1. DOI: 10.1080/19475683.2014.992367.
[2] J. Yao, B. Han, Y. Yang. (2006). Applications of Lodrigues matrix in 3D coordinate transformation. Geomatics and Information Science of Wuhan University.31(12):1094-1119. DOI: 10.1080/19475683.2014.992367.
[3] Z. He, X. Wang, J. Fang. (2014). An innovative high-precision SINS/CNS deep integrated navigation scheme for the Mars rover. Aerospace Science and Technology.39:559-566. DOI: 10.1080/19475683.2014.992367.
[4] P. Yang, L. Xie, J.-L. Liu. (2011). Zernike moment based high-accuracy sun image centroid algorithm. Yuhang Xuebao/Journal of Astronautics.32(9):1963-1970. DOI: 10.1080/19475683.2014.992367.
[5] Y. Zhan, Y. Zheng, C. Zhang, G. Ma. et al.(2015). Image centroid algorithms for sun sensors with super wide field of view. Cehui Xuebao/Acta Geodaetica et Cartographica Sinica.44(10):1078-1084. DOI: 10.1080/19475683.2014.992367.
[6] X. Ning, M. Gui, Y. Xu, X. Bai. et al.(2015). INS/VNS/CNS integrated navigation method for planetary rovers. Aerospace Science and Technology.48:102-114. DOI: 10.1080/19475683.2014.992367.
[7] X. Ning, L. Liu, J. Fang, W. Wu. et al.(2013). Initial position and attitude determination of lunar rovers by INS/CNS integration. Aerospace Science and Technology.30(1):323-332. DOI: 10.1080/19475683.2014.992367.
[8] P. Cui, F. Yue, H. Cui. Attitude and position determination scheme of lunar rovers basing on the celestial vectors observation. :538-543. DOI: 10.1080/19475683.2014.992367.
[9] Y. Zhan, Y. Zheng, C. Zhang. (2013). Celestial Positioning with CCD Observing the Sun. China Satellite Navigation Conference (CSNC) 2013 Proceedings.245:697-706. DOI: 10.1080/19475683.2014.992367.
[10] M. C. Deans, D. Wettergreen, D. Villa. A Sun Tracker for Planetary Analog Rovers. :603. DOI: 10.1080/19475683.2014.992367.
[11] S.-Y. Gao, M.-Y. Zhao, L. Zhang, Y.-Y. Zou. et al.(2008). Improved algorithm about subpixel edge detection of image based on Zernike orthogonal moments. Zidonghua Xuebao/ Acta Automatica Sinica.34(9):1163-1168. DOI: 10.1080/19475683.2014.992367.
[12] C.-H. Li, Y. Zheng, C. Zhang, Y.-L. Yuan. et al.(2014). Astronomical vessel position determination utilizing the optical super wide angle lens camera. Journal of Navigation.67(4):633-649. DOI: 10.1080/19475683.2014.992367.
[13] L. F. Sui, L. J. Song, H. Z. Cai. (2010). Error Theory and Foundation of Surveying Adjustment. DOI: 10.1080/19475683.2014.992367.
[14] R. Volpe. Mars rover navigation results using sun sensor heading determination. :460-467. DOI: 10.1080/19475683.2014.992367.
[15] A. Trebi-Ollennu, T. Huntsberger, Y. Cheng, E. T. Baumgartner. et al.(2001). Design and analysis of a sun sensor for planetary rover absolute heading detection. IEEE Transactions on Robotics and Automation.17(6):939-947. DOI: 10.1080/19475683.2014.992367.
[16] P. Furgale, J. Enright, T. Barfoot. (2011). Sun sensor navigation for planetary rovers: Theory and field testing. IEEE Transactions on Aerospace and Electronic Systems.47(3):1631-1647. DOI: 10.1080/19475683.2014.992367.
[17] J. Enright, P. Furgale, T. Barfoot. Sun sensing for planetary rover navigation. . DOI: 10.1080/19475683.2014.992367.
[18] K. S. Ali, C. A. Vanelli, J. J. Biesiadecki, M. W. Maimone. et al.Attitude and position estimation on the Mars Exploration Rovers. :20-27. DOI: 10.1080/19475683.2014.992367.
[19] M. Ilyas, B. Hong, K. Cho, S.-H. Baeg. et al.(2016). Integrated navigation system design for micro planetary rovers: Comparison of absolute heading estimation algorithms and nonlinear filtering. Sensors.16(5). DOI: 10.1080/19475683.2014.992367.
[20] Y. Kim, W. Jung, H. Bang. (2014). Visual target tracking and relative navigation for unmanned aerial vehicles in a GPS-denied environment. International Journal of Aeronautical and Space Sciences.15(3):258-266. DOI: 10.1080/19475683.2014.992367.
[21] Z. Zhang. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence.22(11):1330-1334. DOI: 10.1080/19475683.2014.992367.
[22] W. Gong. (2015). Discussions on localization capabilities of MSL and MER rovers. Annals of GIS.21(1):69-79. DOI: 10.1080/19475683.2014.992367.
[23] P. Yang, L. Xie, J. Liu. (2014). Simultaneous celestial positioning and orientation for the lunar rover. Aerospace Science and Technology.34(1):45-54. DOI: 10.1080/19475683.2014.992367.
[24] A. Lambert, P. Furgale, T. D. Barfoot, J. Enright. et al.(2012). Field testing of visual odometry aided by a sun sensor and inclinometer. Journal of Field Robotics.29(3):426-444. DOI: 10.1080/19475683.2014.992367.
文献评价指标
浏览 56次
下载全文 12次
评分次数 1次
用户评分 5.0分
分享 0次