首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2018 ,2018-08-09
Characteristics of Stress Transfer and Progressive Fracture in Overlying Strata due to Mining-Induced Disturbances
Research Article
Xiang-feng Lv 1 Hong-yuan Zhou 1 Ai-wen Wang 2 Chun Feng 3 Xiao-chun Xiao 2
Show affiliations
DOI:10.1155/2018/8967010
Received 2018-03-06, accepted for publication 2018-07-10, Published 2018-07-10
PDF
摘要

In this study, based on the mining of the 13210 working face in the Yima coal mine of the Gengcun village, China, a simplified mechanical model for the analysis of dynamic destabilization of the overlying strata during underground mining was constructed. The numerical simulation was used to analyze the stress patterns in the advanced abutments of the tunnel face and the characteristics of dynamic failures in the overlying strata. Furthermore, similitude experiments were conducted to study the process of stress release and deformation in the overlying strata, and to analyze the effects of overburden destabilization on the ground surface settlement. The theoretical analysis indicated that if the geometric parameters of a working face are fully determined, a stiffness ratio no greater than 1 is required for dynamic destabilization to occur. The numerical simulation results show that the stress in the overlying strata decreases with a decrease in distance from the tunnel face. The stresses in the advanced abutments initially increase with an increase in distance from the tunnel face, followed by a decrease in stress, and an eventual stabilization of the stress levels; this corresponds to the existence of a “stress build-up zone,” “stress reduction zone,” and “native rock stress zone.” In similitude experiments, it was observed that a “pseudoplastic beam” state arises after the local stresses of the overlying strata have been completely released, and the “trapezoidal” fractures begin to form at stress concentrations. If the excavation of the working face continues to progress, the area of collapse expands upward, thereby increasing the areas of the fracture and densification zones. Owing to the nonuniform settlement of the overlying strata and the continuous development of bed-separating cracks, secondary fractures will be generated on both sides of the working face, which increase the severity of the ground surface settlement.

授权许可

Copyright © 2018 Xiang-feng Lv et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xiang-feng Lv.Geotechnical Engineering Research Center, Institute of Municipal Engineering, Beijing 100037, China.szgcyjylvxiangfeng@163.com

推荐引用方式

Xiang-feng Lv,Hong-yuan Zhou,Ai-wen Wang,Chun Feng,Xiao-chun Xiao. Characteristics of Stress Transfer and Progressive Fracture in Overlying Strata due to Mining-Induced Disturbances. Advances in Civil Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. G. Qian, X. X. Miao, J. L. Xu. (1996). Theoretical study of key stratum in ground control. Journal of China Coal Society.21(3):225-230. DOI: 10.1016/j.ijrmms.2003.12.076.
[2] H. W. Song, Y. X. Jia, Y. Y. Duan. (2006). Study on characteristics of rock broken by excavation and roof supporting object. Journal of China University of Mining and Technology.35(2):192-196. DOI: 10.1016/j.ijrmms.2003.12.076.
[3] F. Q. Gong, G. F. Zhao. (2014). Dynamic indirect tensile strength of sandstone under different loading rates. Rock Mechanics and Rock Engineering.47(6):2271-2278. DOI: 10.1016/j.ijrmms.2003.12.076.
[4] L. M. Dou, J. He, A. Cao. (2015). Rock burst prevention methods based on theory of dynamic and static combined load induced in coal mine. Journal of China Coal Society.40(7):1469-1476. DOI: 10.1016/j.ijrmms.2003.12.076.
[5] W. C. Qian. (1987). Variational principles in elasticity with nonliner stress-strain relation. Applied Mathematics and Mechanics.8(7):567-577. DOI: 10.1016/j.ijrmms.2003.12.076.
[6] W. M. Cheng, L. L. Sun, G. Wang, X. C. Huang. et al.(2016). Similar material simulation test of steep-inclined extra-thick coal seam. Journal of Mining and Safety Engineering.33(3):387-392. DOI: 10.1016/j.ijrmms.2003.12.076.
[7] F. Qiu, H. Ding. (2006). Finite element method simulating failure of rock material. Chinese Journal of Rock Mechanics and Engineering.26(S1):2663-2668. DOI: 10.1016/j.ijrmms.2003.12.076.
[8] R. Q. Huang. (2004). Geo-stress distribution and unloading fracturing mechanism of high rock slopes in western part of China. Journal of Engineering Geology.12:7-13. DOI: 10.1016/j.ijrmms.2003.12.076.
[9] F. Q. Wu, T. Liu, X. L. Tang. (2009). Research on unloading and zonation of rock mass dam foundation excavation-a case study of Xiaowan hydropower station. Chinese Journal of Rock Mechanics and Engineering.28(6):1091-1098. DOI: 10.1016/j.ijrmms.2003.12.076.
[10] S. C. Li, W. S. Zhu, W. Z. Chen. (2002). Application of elasto-plastic large displacement finite element method to the study of deformation prediction of soft rock tunnel. Chinese Journal of Rock Mechanics and Engineering.21(4):466-470. DOI: 10.1016/j.ijrmms.2003.12.076.
[11] B. Orlecka-Sikora, S. Lasocki, G. Lizurek, L. Rudziński. et al.(2012). Response of seismic activity in mines to the stress changes due to mining induced strong seismic events. International Journal of Rock Mechanics and Mining Sciences.53:151-158. DOI: 10.1016/j.ijrmms.2003.12.076.
[12] D. Huang, Q. Tan, R. Q. Huang. (2012). Study of micro-mesoscopic characteristics of marble fracture surface and correlation with unloading rock mass strength under high stress and unloading. Rock and Soil Mechanics.33(S2):7-15. DOI: 10.1016/j.ijrmms.2003.12.076.
[13] J. Xiao. (2013). Selection of similar materials for model test and research on similar material proportioning test. . DOI: 10.1016/j.ijrmms.2003.12.076.
[14] X. P. Zhou, Q. H. Qian, B. H. Zhang. (2009). Zonal disintegration mechanism of deep crack-weakened rock masses under dynamic unloading. Acta Mechanica Solida Sinica.22(3):240-250. DOI: 10.1016/j.ijrmms.2003.12.076.
[15] H. Q. Xie, C. H. He. (2004). Study of the unloading characteristics of a rock mass using the triaxial test and damage mechanics. International Journal of Rock Mechanics and Mining Sciences.41(S1):74-80. DOI: 10.1016/j.ijrmms.2003.12.076.
[16] F. Li, J. A. Wang, P. F. Li, K. Huang. et al.(2016). Research on movement behavior and failure mechanism of overlying strata caused by mining at mountainous field. Rock and Soil Mechanics.37(4):1089-1095. DOI: 10.1016/j.ijrmms.2003.12.076.
[17] Y. P. Wu, Y. G. Yang, P. S. Xie. (2007). Application of cusp catastrophe theory to research of mine water inrush law from roof. Coal Science and Technology.35(3):37-40. DOI: 10.1016/j.ijrmms.2003.12.076.
[18] S. H. Li, M. H. Zhao, Y. N. Wang, Y. Rao. et al.(2004). A new computational model of three-dimensional DEM-block and particle model. International Journal of Rock Mechanics and Mining Sciences.41(3):436. DOI: 10.1016/j.ijrmms.2003.12.076.
[19] M. G. Qian, P. W. Shi, J. L. Xv. (2010). Mining Pressure and Strata Control. DOI: 10.1016/j.ijrmms.2003.12.076.
[20] J. Tang, J. A. Wang, L. Wang. (2014). Dynamic laws and characteristics of surface movement induced by mining under thin alluvium. Rock and Soil Mechanics.35(10):2958-2968. DOI: 10.1016/j.ijrmms.2003.12.076.
[21] H. C. Hu. (1981). Variational Principle of Elasticity and Its Application. DOI: 10.1016/j.ijrmms.2003.12.076.
[22] X. B. Li, S. M. Wang, L. Weng, L. Q. Huang. et al.(2015). Damage constitutive model of different age concretes under impact load. Journal of Central South University.22(2):693-700. DOI: 10.1016/j.ijrmms.2003.12.076.
[23] P. A. Cundall. A computer model for simulating progressive large-scale movements in blocky rock systems. :11-18. DOI: 10.1016/j.ijrmms.2003.12.076.
[24] M. F. Cai, J. A. Wang, S. H. Wang. (2001). Analysis on energy distribution and prediction of rock burst during deep mining excavation in Linglong gold mine. Chinese Journal of Rock Mechanics and Engineering.20(1):38-42. DOI: 10.1016/j.ijrmms.2003.12.076.
[25] Z. S. Ma, C. Feng, T. P. Liu, S. H. Li. et al.(2011). A GPU accelerated continuous-based discrete element method for elastodynamics analysis. Advanced Materials Research.320:329-34. DOI: 10.1016/j.ijrmms.2003.12.076.
[26] Z. Q. Yin, X. B. Li, J. F. Jin, X. Q. He. et al.(2012). Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading. Transactions of Nonferrous Metals Society of China.22(1):175-184. DOI: 10.1016/j.ijrmms.2003.12.076.
[27] C. Feng, S. H. Li. (2015). 2D particle contact-based meshfree method in CDEM and its application in geotechnical problems. Engineering Computations.32(4):1080-1103. DOI: 10.1016/j.ijrmms.2003.12.076.
[28] K. M. O’Connor, C. H. Dowding. (1992). Distinct element modeling and analysis of mining induced subsidence. Rock Mechanics and Rock Engineering.25(1):1-24. DOI: 10.1016/j.ijrmms.2003.12.076.
[29] D. P. Ma, T. X. Wang, Y. Liu. (2015). An analysis of “space-time” relationship of gob-side entry driving in dynamic pressure area. Journal of Mining and Safety Engineering.32(3):465-470. DOI: 10.1016/j.ijrmms.2003.12.076.
[30] A. Sainoki, H. S. Mitri. (2014). Dynamic behavior of mining-induced fault slip. International Journal of Rock Mechanics and Mining Sciences.66:19-29. DOI: 10.1016/j.ijrmms.2003.12.076.
[31] J. W. Wu, H. S. Tong, S. J. Tong, D. Q. Tang. et al.(2007). Study on similar material for simulation of mining effect of rock mass at fault zone. Chinese Journal of Rock Mechanics and Engineering.26(S2):4170-4175. DOI: 10.1016/j.ijrmms.2003.12.076.
[32] P. L. Gong, Y. Q. Hu, Y. S. Zhao, D. Yang. et al.(2005). Three-dimensional simulation study on law of deformation and breakage of coal floor on mining above aquifer. Chinese Journal of Rock Mechanics and Engineering.24(23):4396-4402. DOI: 10.1016/j.ijrmms.2003.12.076.
[33] H. Wang, Y. Jiang, S. Xue. (2016). Influence of fault slip on mining-induced pressure and optimization of roadway support design in fault-influenced zone. Journal of Rock Mechanics and Geotechnical Engineering.8(5):660-671. DOI: 10.1016/j.ijrmms.2003.12.076.
[34] CUMT. (2011). Study on stress transmission laws of mining floor and its influence on stability of floor roadway. . DOI: 10.1016/j.ijrmms.2003.12.076.
[35] W. D. Song, J. X. Fu, D. X. Wang. (2012). Study on physical and numerical simulation of failure laws of wall rock due to transformation from open-pit to underground mining. Journal of China Coal Society.37(2):186-191. DOI: 10.1016/j.ijrmms.2003.12.076.
[36] L. X. Wu, J. Z. Wang, Y. A. Liu. (1994). Coal Strip Mining under Buildings: Theory and Practice. DOI: 10.1016/j.ijrmms.2003.12.076.
[37] X. X. Miao, R. H. Chen, H. Pu. (2005). Analysis of breakage and collapse of thick key strata around coal face. Chinese Journal of Rock Mechanics and Engineering.24(8):1289-1295. DOI: 10.1016/j.ijrmms.2003.12.076.
文献评价指标
浏览 325次
下载全文 105次
评分次数 516次
用户评分 0.0分
分享 0次