首页 » 文章 » 文章详细信息
eLife Volume 7 ,2018-07-01
Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing
Neuroscience
Jun Kunimatsu 1 , 2 Tomoki W Suzuki 1 Shogo Ohmae 1 , 3 Masaki Tanaka 1
Show affiliations
DOI:10.7554/eLife.35676
Received 2018-02-05, accepted for publication 2018-07-01, Published 2018-07-01
PDF
摘要

10.7554/eLife.35676.001The ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period. Conversely, neuronal correlates of trial-by-trial variation of self-timing emerged earlier in the cerebellum than the striatum. Local inactivation of respective recording sites confirmed the difference in their relative contributions to supra- and sub-second intervals. These results suggest that the basal ganglia may measure elapsed time relative to the intended interval, while the cerebellum might be responsible for the fine adjustment of self-timing.

关键词

Other;inactivation;single neurons;interval timing;cerebellum;basal ganglia;Japanese macaque

通讯作者
推荐引用方式

Jun Kunimatsu,Tomoki W Suzuki,Shogo Ohmae,Masaki Tanaka. Different contributions of preparatory activity in the basal ganglia and cerebellum for self-timing. eLife ,Vol.7(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] MJ Hayashi, T Ditye, T Harada, M Hashiguchi. et al.(2015). Time adaptation shows duration selectivity in the human parietal cortex. PLoS Biology.13. DOI: 10.1146/annurev-psych-010213-115117.
[2] O Hikosaka, RH Wurtz. (1983). Visual and oculomotor functions of monkey substantia nigra pars reticulata. III. Memory-contingent visual and saccade responses. Journal of Neurophysiology.49:1268-1284. DOI: 10.1146/annurev-psych-010213-115117.
[3] S Teki, M Grube, S Kumar, TD Griffiths. et al.(2011). Distinct neural substrates of duration-based and beat-based auditory timing. Journal of Neuroscience.31:3805-3812. DOI: 10.1146/annurev-psych-010213-115117.
[4] N Li, K Daie, K Svoboda, S Druckmann. et al.(2016). Robust neuronal dynamics in premotor cortex during motor planning. Nature.532:459-464. DOI: 10.1146/annurev-psych-010213-115117.
[5] MW Howe, PL Tierney, SG Sandberg, PE Phillips. et al.(2013). Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature.500:575-579. DOI: 10.1146/annurev-psych-010213-115117.
[6] UM D'Souza, IW Craig. (2006). Functional polymorphisms in dopamine and serotonin pathway genes. Human Mutation.27:1-13. DOI: 10.1146/annurev-psych-010213-115117.
[7] S Ohmae, JF Medina. (2015). Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nature Neuroscience.18:1798-1803. DOI: 10.1146/annurev-psych-010213-115117.
[8] S Ohmae, J Kunimatsu, M Tanaka. (2017). Cerebellar roles in self-timing for sub- and supra-second intervals. The Journal of Neuroscience.37:3511-3522. DOI: 10.1146/annurev-psych-010213-115117.
[9] F Macar, F Vidal. (2003). The CNV peak: an index of decision making and temporal memory. Psychophysiology.40:950-954. DOI: 10.1146/annurev-psych-010213-115117.
[10] JT Coull, RK Cheng, WH Meck. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology.36:3-25. DOI: 10.1146/annurev-psych-010213-115117.
[11] S Ohmae, A Uematsu, M Tanaka. (2013). Temporally specific sensory signals for the detection of stimulus omission in the primate deep cerebellar nuclei. Journal of Neuroscience.33:15432-15441. DOI: 10.1146/annurev-psych-010213-115117.
[12] MG Costello, D Zhu, PJ May, E Salinas. et al.(2016). Task dependence of decision- and choice-related activity in monkey oculomotor thalamus. Journal of Neurophysiology.115:581-601. DOI: 10.1146/annurev-psych-010213-115117.
[13] MM Ten Brinke, SA Heiney, X Wang, M Proietti-Onori. et al.(2017). Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife.6. DOI: 10.1146/annurev-psych-010213-115117.
[14] PA Lewis, RC Miall. (2003). Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Current Opinion in Neurobiology.13:250-255. DOI: 10.1146/annurev-psych-010213-115117.
[15] JL Raymond, SG Lisberger, MD Mauk. (1996). The cerebellum: a neuronal learning machine?. Science.272:1126-1131. DOI: 10.1146/annurev-psych-010213-115117.
[16] WT Thach, HP Goodkin, JG Keating. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience.15:403-442. DOI: 10.1146/annurev-psych-010213-115117.
[17] SM Rao, AR Mayer, DL Harrington. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience.4:317-323. DOI: 10.1146/annurev-psych-010213-115117.
[18] V Prevosto, W Graf, G Ugolini. (2010). Cerebellar inputs to intraparietal cortex areas LIP and MIP: functional frameworks for adaptive control of eye movements, reaching, and arm/eye/head movement coordination. Cerebral Cortex.20:214-228. DOI: 10.1146/annurev-psych-010213-115117.
[19] ZV Guo, HK Inagaki, K Daie, S Druckmann. et al.(2017). Maintenance of persistent activity in a frontal thalamocortical loop. Nature.545:181-186. DOI: 10.1146/annurev-psych-010213-115117.
[20] RP Dum, PL Strick. (2003). An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. Journal of Neurophysiology.89:634-639. DOI: 10.1146/annurev-psych-010213-115117.
[21] ES Bromberg-Martin, M Matsumoto, O Hikosaka. (2010). Distinct tonic and phasic anticipatory activity in lateral habenula and dopamine neurons. Neuron.67:144-155. DOI: 10.1146/annurev-psych-010213-115117.
[22] KS Garcia, MD Mauk. (1998). Pharmacological analysis of cerebellar contributions to the timing and expression of conditioned eyelid responses. Neuropharmacology.37:471-480. DOI: 10.1146/annurev-psych-010213-115117.
[23] MJ Frank, J Samanta, AA Moustafa, SJ Sherman. et al.(2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science.318:1309-1312. DOI: 10.1146/annurev-psych-010213-115117.
[24] M Tanaka. (2006). Inactivation of the central thalamus delays self-timed saccades. Nature Neuroscience.9:20-22. DOI: 10.1146/annurev-psych-010213-115117.
[25] CH Chen, R Fremont, EE Arteaga-Bracho, K Khodakhah. et al.(2014). Short latency cerebellar modulation of the basal ganglia. Nature Neuroscience.17:1767-1775. DOI: 10.1146/annurev-psych-010213-115117.
[26] J Kunimatsu, M Tanaka. (2012). Alteration of the timing of self-initiated but not reactive saccades by electrical stimulation in the supplementary eye field. European Journal of Neuroscience.36:3258-3268. DOI: 10.1146/annurev-psych-010213-115117.
[27] M Murakami, H Shteingart, Y Loewenstein, ZF Mainen. et al.(2017). Distinct sources of deterministic and stochastic components of action timing decisions in rodent frontal cortex. Neuron.94:908-919. DOI: 10.1146/annurev-psych-010213-115117.
[28] M Murakami, MI Vicente, GM Costa, ZF Mainen. et al.(2014). Neural antecedents of self-initiated actions in secondary motor cortex. Nature Neuroscience.17:1574-1582. DOI: 10.1146/annurev-psych-010213-115117.
[29] CV Buhusi, WH Meck. (2005). What makes Us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience.6:755-765. DOI: 10.1146/annurev-psych-010213-115117.
[30] J Kunimatsu, M Tanaka. (2016). Striatal dopamine modulates timing of self-initiated saccades. Neuroscience.337:131-142. DOI: 10.1146/annurev-psych-010213-115117.
[31] Y Nagai, HD Critchley, E Featherstone, PB Fenwick. et al.(2004). Brain activity relating to the contingent negative variation: an fMRI investigation. NeuroImage.21:1232-1241. DOI: 10.1146/annurev-psych-010213-115117.
[32] S Teki, TD Griffiths. (2016). Brain bases of working memory for time intervals in rhythmic sequences. Frontiers in Neuroscience.10. DOI: 10.1146/annurev-psych-010213-115117.
[33] M Tanaka. (2007). Cognitive signals in the primate motor thalamus predict saccade timing. Journal of Neuroscience.27:12109-12118. DOI: 10.1146/annurev-psych-010213-115117.
[34] C Constantinidis, T Klingberg. (2016). The neuroscience of working memory capacity and training. Nature Reviews Neuroscience.17:438-449. DOI: 10.1146/annurev-psych-010213-115117.
[35] J Kunimatsu, TW Suzuki, M Tanaka. (2016). Implications of lateral cerebellum in proactive control of saccades. Journal of Neuroscience.36:7066-7074. DOI: 10.1146/annurev-psych-010213-115117.
[36] J Peterburs, M Thürling, M Rustemeier, S Göricke. et al.(2015). A cerebellar role in performance monitoring - evidence from EEG and voxel-based morphometry in patients with cerebellar degenerative disease. Neuropsychologia.68:139-147. DOI: 10.1146/annurev-psych-010213-115117.
[37] TW Kononowicz, H van Rijn. (2011). Slow potentials in time estimation: the role of temporal accumulation and habituation. Frontiers in Integrative Neuroscience.5. DOI: 10.1146/annurev-psych-010213-115117.
[38] SP Perrett, BP Ruiz, MD Mauk. (1993). Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses. The Journal of Neuroscience.13:1708-1718. DOI: 10.1146/annurev-psych-010213-115117.
[39] MA Pastor, J Artieda, M Jahanshahi, JA Obeso. et al.(1992). Time estimation and reproduction is abnormal in Parkinson's disease. Brain.115:211-225. DOI: 10.1146/annurev-psych-010213-115117.
[40] L Olson, K Fuxe. (1971). On the projections from the locus coeruleus noradrealine neurons: the cerebellar innervation. Brain Research.28:165-171. DOI: 10.1146/annurev-psych-010213-115117.
[41] G Aston-Jones, JD Cohen. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience.28:403-450. DOI: 10.1146/annurev-psych-010213-115117.
[42] AC Bostan, PL Strick. (2018). The basal ganglia and the cerebellum: nodes in an integrated network. Nature Reviews Neuroscience.19:338-350. DOI: 10.1146/annurev-psych-010213-115117.
[43] PL Strick, RP Dum, JA Fiez. (2009). Cerebellum and nonmotor function. Annual Review of Neuroscience.32:413-434. DOI: 10.1146/annurev-psych-010213-115117.
[44] R Bartolo, L Prado, H Merchant. (2014). Information processing in the primate basal ganglia during sensory-guided and internally driven rhythmic tapping. Journal of Neuroscience.34:3910-3923. DOI: 10.1146/annurev-psych-010213-115117.
[45] T Kaneko. (2013). Local connections of excitatory neurons in motor-associated cortical areas of the rat. Frontiers in Neural Circuits.7. DOI: 10.1146/annurev-psych-010213-115117.
[46] H Merchant, O Pérez, W Zarco, J Gámez. et al.(2013b). Interval tuning in the primate medial premotor cortex as a general timing mechanism. Journal of Neuroscience.33:9082-9096. DOI: 10.1146/annurev-psych-010213-115117.
[47] H Merchant, DL Harrington, WH Meck. (2013a). Neural basis of the perception and estimation of time. Annual Review of Neuroscience.36:313-336. DOI: 10.1146/annurev-psych-010213-115117.
[48] M Xu, SY Zhang, Y Dan, MM Poo. et al.(2014). Representation of interval timing by temporally scalable firing patterns in rat prefrontal cortex. PNAS.111:480-485. DOI: 10.1146/annurev-psych-010213-115117.
[49] M Jazayeri, MN Shadlen. (2015). A neural mechanism for sensing and reproducing a time interval. Current Biology.25:2599-2609. DOI: 10.1146/annurev-psych-010213-115117.
[50] H Merchant, BB Averbeck. (2017). The computational and neural basis of rhythmic timing in medial premotor cortex. The Journal of Neuroscience.37:4552-4564. DOI: 10.1146/annurev-psych-010213-115117.
[51] P Janssen, MN Shadlen. (2005). A representation of the hazard rate of elapsed time in macaque area LIP. Nature Neuroscience.8:234-241. DOI: 10.1146/annurev-psych-010213-115117.
[52] A Mita, H Mushiake, K Shima, Y Matsuzaka. et al.(2009). Interval time coding by neurons in the presupplementary and supplementary motor areas. Nature Neuroscience.12:502-507. DOI: 10.1146/annurev-psych-010213-115117.
[53] TW Suzuki, J Kunimatsu, M Tanaka. (2016). Correlation between pupil size and subjective passage of time in non-human primates. Journal of Neuroscience.36:11331-11337. DOI: 10.1146/annurev-psych-010213-115117.
[54] TW Suzuki, M Tanaka. (2017). Causal role of noradrenaline in the timing of internally generated saccades in monkeys. Neuroscience.366:15-22. DOI: 10.1146/annurev-psych-010213-115117.
[55] Y Tachibana, H Kita, S Chiken, M Takada. et al.(2008). Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. European Journal of Neuroscience.27:238-253. DOI: 10.1146/annurev-psych-010213-115117.
[56] MJ Allman, S Teki, TD Griffiths, WH Meck. et al.(2014). Properties of the internal clock: first- and second-order principles of subjective time. Annual Review of Psychology.65:743-771. DOI: 10.1146/annurev-psych-010213-115117.
[57] T Aosaki, M Kimura, AM Graybiel. (1995). Temporal and spatial characteristics of tonically active neurons of the primate's striatum. Journal of Neurophysiology.73:1234-1252. DOI: 10.1146/annurev-psych-010213-115117.
[58] P van Donkelaar, JF Stein, RE Passingham, RC Miall. et al.(2000). Temporary inactivation in the primate motor thalamus during visually triggered and internally generated limb movements. Journal of Neurophysiology.83:2780-2790. DOI: 10.1146/annurev-psych-010213-115117.
[59] RB Ivry, RM Spencer. (2004). The neural representation of time. Current Opinion in Neurobiology.14:225-232. DOI: 10.1146/annurev-psych-010213-115117.
[60] NR McFarland, SN Haber. (2001). Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque. The Journal of Comparative Neurology.429:321-336. DOI: 10.1146/annurev-psych-010213-115117.
[61] H van Rijn, TW Kononowicz, WH Meck, KK Ng. et al.(2011). Contingent negative variation and its relation to time estimation: a theoretical evaluation. Frontiers in Integrative Neuroscience.5. DOI: 10.1146/annurev-psych-010213-115117.
[62] A Ikeda, H Shibasaki, R Kaji, K Terada. et al.(1997). Dissociation between contingent negative variation (CNV) and Bereitschaftspotential (BP) in patients with parkinsonism. Electroencephalography and Clinical Neurophysiology.102:142-151. DOI: 10.1146/annurev-psych-010213-115117.
[63] JS Ide, CS Li. (2011). A cerebellar thalamic cortical circuit for error-related cognitive control. NeuroImage.54:455-464. DOI: 10.1146/annurev-psych-010213-115117.
[64] G Maimon, JA Assad. (2006). A cognitive signal for the proactive timing of action in macaque LIP. Nature Neuroscience.9:948-955. DOI: 10.1146/annurev-psych-010213-115117.
[65] J Wang, D Narain, EA Hosseini, M Jazayeri. et al.(2018). Flexible timing by temporal scaling of cortical responses. Nature Neuroscience.21:102-110. DOI: 10.1146/annurev-psych-010213-115117.
[66] GB Mello, S Soares, JJ Paton. (2015). A scalable population code for time in the striatum. Current Biology.25:1113-1122. DOI: 10.1146/annurev-psych-010213-115117.
[67] D Xu, T Liu, J Ashe, KO Bushara. et al.(2006). Role of the olivo-cerebellar system in timing. Journal of Neuroscience.26:5990-5995. DOI: 10.1146/annurev-psych-010213-115117.
[68] W Schultz, R Romo. (1992). Role of primate basal ganglia and frontal cortex in the internal generation of movements. I. Preparatory activity in the anterior striatum. Experimental Brain Research.91:363-384. DOI: 10.1146/annurev-psych-010213-115117.
[69] RC Ashmore, MA Sommer. (2013). Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum. Journal of Neurophysiology.109:2129-2144. DOI: 10.1146/annurev-psych-010213-115117.
[70] D Schoppik, SG Lisberger. (2006). Saccades exert spatial control of motion processing for smooth pursuit eye movements. Journal of Neuroscience.26:7607-7618. DOI: 10.1146/annurev-psych-010213-115117.
[71] S Soares, BV Atallah, JJ Paton. (2016). Midbrain dopamine neurons control judgment of time. Science.354:1273-1277. DOI: 10.1146/annurev-psych-010213-115117.
文献评价指标
浏览 97次
下载全文 8次
评分次数 0次
用户评分 0.0分
分享 0次