首页 » 文章 » 文章详细信息
eLife Volume 7 ,2018-07-01
Bidirectional encoding of motion contrast in the mouse superior colliculus
Neuroscience
Jad Barchini 1 , 2 Xuefeng Shi 1 , 3 , 4 Hui Chen 1 , 5 , 6 Jianhua Cang 1 , 5 , 6
Show affiliations
DOI:10.7554/eLife.35261
Received 2018-01-20, accepted for publication 2018-07-01, Published 2018-07-01
PDF
摘要

10.7554/eLife.35261.001Detection of salient objects in the visual scene is a vital aspect of an animal’s interactions with its environment. Here, we show that neurons in the mouse superior colliculus (SC) encode visual saliency by detecting motion contrast between stimulus center and surround. Excitatory neurons in the most superficial lamina of the SC are contextually modulated, monotonically increasing their response from suppression by the same-direction surround to maximal potentiation by an oppositely-moving surround. The degree of this potentiation declines with depth in the SC. Inhibitory neurons are suppressed by any surround at all depths. These response modulations in both neuronal populations are much more prominent to direction contrast than to phase, temporal frequency, or static orientation contrast, suggesting feature-specific saliency encoding in the mouse SC. Together, our findings provide evidence supporting locally generated feature representations in the SC, and lay the foundations towards a mechanistic and evolutionary understanding of their emergence.

关键词

Mouse;superior colliculus;two-photon imaging;center-surround interactions;vision;saliency;direction selectivity

授权许可

© 2018, Barchini et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Jad Barchini,Xuefeng Shi,Hui Chen,Jianhua Cang. Bidirectional encoding of motion contrast in the mouse superior colliculus. eLife ,Vol.7(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S Kastner, HC Nothdurft, IN Pigarev. (1999). Neuronal responses to orientation and motion contrast in cat striate cortex. Visual Neuroscience.16:587-600. DOI: 10.1038/nature11526.
[2] GB Keller, T Bonhoeffer, M Hübener. (2012). Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron.74:809-815. DOI: 10.1038/nature11526.
[3] CM Niell, MP Stryker. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience.28:7520-7536. DOI: 10.1038/nature11526.
[4] C Shang, Z Liu, Z Chen, Y Shi. et al.(2015). Brain circuits. A parvalbumin-positive excitatory visual pathway to trigger fear responses in mice. Science.348:1472-1477. DOI: 10.1038/nature11526.
[5] JJ Knierim, DC van Essen. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology.67:961-980. DOI: 10.1038/nature11526.
[6] X Shi, J Barchini, HA Ledesma, D Koren. et al.(2017). Retinal origin of direction selectivity in the superior colliculus. Nature Neuroscience.20:550-558. DOI: 10.1038/nature11526.
[7] HC Nothdurft, JL Gallant, DC Van Essen. (1999). Response modulation by texture surround in primate area V1: correlates of "popout" under anesthesia. Visual Neuroscience.16:15-34. DOI: 10.1038/nature11526.
[8] AM Sillito, KL Grieve, HE Jones, J Cudeiro. et al.(1995). Visual cortical mechanisms detecting focal orientation discontinuities. Nature.378:492-496. DOI: 10.1038/nature11526.
[9] H Nienborg, A Hasenstaub, I Nauhaus, H Taniguchi. et al.(2013). Contrast dependence and differential contributions from somatostatin- and parvalbumin-expressing neurons to spatial integration in mouse V1. Journal of Neuroscience.33:11145-11154. DOI: 10.1038/nature11526.
[10] L Zhaoping. (2016). From the optic tectum to the primary visual cortex: migration through evolution of the saliency map for exogenous attentional guidance. Current Opinion in Neurobiology.40:94-102. DOI: 10.1038/nature11526.
[11] SD Gale, GJ Murphy. (2014). Distinct representation and distribution of visual information by specific cell types in mouse superficial superior colliculus. Journal of Neuroscience.34:13458-13471. DOI: 10.1038/nature11526.
[12] EM Ellis, G Gauvain, B Sivyer, GJ Murphy. et al.(2016). Shared and distinct retinal input to the mouse superior colliculus and dorsal lateral geniculate nucleus. Journal of Neurophysiology.116:602-610. DOI: 10.1038/nature11526.
[13] SA Baccus, BP Olveczky, M Manu, M Meister. et al.(2008). A retinal circuit that computes object motion. Journal of Neuroscience.28:6807-6817. DOI: 10.1038/nature11526.
[14] BJ Frost, PL Scilley, SC Wong. (1981). Moving background patterns reveal double-opponency of directionally specific pigeon tectal neurons. Experimental Brain Research.43:173-185. DOI: 10.1038/nature11526.
[15] M Ben-Tov, O Donchin, O Ben-Shahar, R Segev. et al.(2015). Pop-out in visual search of moving targets in the archer fish. Nature Communications.6. DOI: 10.1038/nature11526.
[16] Z Li. (1999). Contextual influences in V1 as a basis for pop out and asymmetry in visual search. PNAS.96:10530-10535. DOI: 10.1038/nature11526.
[17] Y Zahar, H Wagner, Y Gutfreund. (2012). Responses of tectal neurons to contrasting stimuli: an electrophysiological study in the barn owl. PLoS One.7. DOI: 10.1038/nature11526.
[18] HE Jones, W Wang, AM Sillito. (2002). Spatial organization and magnitude of orientation contrast interactions in primate V1. Journal of Neurophysiology.88:2796-2808. DOI: 10.1038/nature11526.
[19] KE Binns, TE Salt. (1997). Different roles for GABAA and GABAB receptors in visual processing in the rat superior colliculus. The Journal of Physiology.504:629-639. DOI: 10.1038/nature11526.
[20] S Girman, R Lund. (2010). Orientation-specific modulation of rat retinal ganglion cell responses and its dependence on relative orientations of the center and surround gratings. Journal of Neurophysiology.104:2951-2962. DOI: 10.1038/nature11526.
[21] M Kasai, T Isa. (2016). Imaging population dynamics of surround suppression in the superior colliculus. European Journal of Neuroscience.44:2543-2556. DOI: 10.1038/nature11526.
[22] X Zhao, M Liu, J Cang. (2014). Visual cortex modulates the magnitude but not the selectivity of looming-evoked responses in the superior colliculus of awake mice. Neuron.84:202-213. DOI: 10.1038/nature11526.
[23] Z Li. (2002). A saliency map in primary visual cortex. Trends in Cognitive Sciences.6:9-16. DOI: 10.1038/nature11526.
[24] BP Olveczky, SA Baccus, M Meister. (2003). Segregation of object and background motion in the retina. Nature.423:401-408. DOI: 10.1038/nature11526.
[25] HE Jones, KL Grieve, W Wang, AM Sillito. et al.(2001). Surround suppression in primate V1. Journal of Neurophysiology.86:2011-2028. DOI: 10.1038/nature11526.
[26] PJ May. (2006). The mammalian superior colliculus: laminar structure and connections. Progress in Brain Research.151:321-378. DOI: 10.1038/nature11526.
[27] HJ Sun, J Zhao, TL Southall, B Xu. et al.(2002). Contextual influences on the directional responses of tectal cells in pigeons. Visual Neuroscience.19:133-144. DOI: 10.1038/nature11526.
[28] P Sterling, BG Wickelgren. (1969). Visual receptive fields in the superior colliculus of the cat. Journal of Neurophysiology.32:1-15. DOI: 10.1038/nature11526.
[29] F Liang, XR Xiong, B Zingg, XY Ji. et al.(2015). Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron.86:755-767. DOI: 10.1038/nature11526.
[30] M Tada, A Takeuchi, M Hashizume, K Kitamura. et al.(2014). A highly sensitive fluorescent indicator dye for calcium imaging of neural activity in vitro and in vivo. European Journal of Neuroscience.39:1720-1728. DOI: 10.1038/nature11526.
[31] F Sengpiel, A Sen, C Blakemore. (1997). Characteristics of surround inhibition in cat area 17. Experimental Brain Research.116:216-228. DOI: 10.1038/nature11526.
[32] MW Self, JA Lorteije, J Vangeneugden, EH van Beest. et al.(2014). Orientation-tuned surround suppression in mouse visual cortex. Journal of Neuroscience.34:9290-9304. DOI: 10.1038/nature11526.
[33] RN Sachdev, MR Krause, JA Mazer. (2012). Surround suppression and sparse coding in visual and barrel cortices. Frontiers in Neural Circuits.6. DOI: 10.1038/nature11526.
[34] BJ White, DJ Berg, JY Kan, RA Marino. et al.(2017). Superior colliculus neurons encode a visual saliency map during free viewing of natural dynamic video. Nature Communications.8. DOI: 10.1038/nature11526.
[35] J Cang, DA Feldheim. (2013). Developmental mechanisms of topographic map formation and alignment. Annual Review of Neuroscience.36:51-77. DOI: 10.1038/nature11526.
[36] P Wei, N Liu, Z Zhang, X Liu. et al.(2015). Processing of visually evoked innate fear by a non-canonical thalamic pathway. Nature Communications.6. DOI: 10.1038/nature11526.
[37] DH Brainard. (1997). The psychophysics toolbox. Spatial Vision.10:433-436. DOI: 10.1038/nature11526.
[38] R Veale, ZM Hafed, M Yoshida. (2017). How is visual salience computed in the brain? Insights from behaviour, neurobiology and modelling. Philosophical Transactions of the Royal Society B: Biological Sciences.372. DOI: 10.1038/nature11526.
[39] H Adesnik, W Bruns, H Taniguchi, ZJ Huang. et al.(2012). A neural circuit for spatial summation in visual cortex. Nature.490:226-231. DOI: 10.1038/nature11526.
[40] SV Girman, RD Lund. (2007). Most superficial sublamina of rat superior colliculus: neuronal response properties and correlates with perceptual figure-ground segregation. Journal of Neurophysiology.98:161-177. DOI: 10.1038/nature11526.
[41] S Ito, DA Feldheim, AM Litke. (2017). Segregation of visual response properties in the mouse superior colliculus and their modulation during locomotion. The Journal of Neuroscience.37:3689-16. DOI: 10.1038/nature11526.
[42] P Zmarz, GB Keller. (2016). Mismatch receptive fields in mouse visual cortex. Neuron.92:766-772. DOI: 10.1038/nature11526.
[43] L Wang, R Sarnaik, K Rangarajan, X Liu. et al.(2010). Visual receptive field properties of neurons in the superficial superior colliculus of the mouse. Journal of Neuroscience.30:16573-16584. DOI: 10.1038/nature11526.
[44] S Inayat, J Barchini, H Chen, L Feng. et al.(2015). Neurons in the most superficial lamina of the mouse superior colliculus are highly selective for stimulus direction. Journal of Neuroscience.35:7992-8003. DOI: 10.1038/nature11526.
[45] CC Chiao, RH Masland. (2003). Contextual tuning of direction-selective retinal ganglion cells. Nature Neuroscience.6:1251-1252. DOI: 10.1038/nature11526.
[46] M Ahmadlou, A Tafreshiha, JA Heimel. (2017). Visual cortex limits Pop-Out in the superior colliculus of awake mice. Cerebral Cortex.27:5772-5783. DOI: 10.1038/nature11526.
文献评价指标
浏览 143次
下载全文 22次
评分次数 0次
用户评分 0.0分
分享 0次