首页 » 文章 » 文章详细信息
eLife Volume 7 ,2018-07-01
Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli
Cell Biology
Michael H Hayes 1 Elizabeth H Peuchen 2 Norman J Dovichi 2 Daniel L Weeks 1 , 3
Show affiliations
DOI:10.7554/eLife.35224
Received 2018-01-19, accepted for publication 2018-07-01, Published 2018-07-01
PDF
摘要

10.7554/eLife.35224.001For many proteins, aggregation is one part of a structural equilibrium that can occur. Balancing productive aggregation versus pathogenic aggregation that leads to toxicity is critical and known to involve adenosine triphosphate (ATP) dependent action of chaperones and disaggregases. Recently a second activity of ATP was identified, that of a hydrotrope which, independent of hydrolysis, was sufficient to solubilize aggregated proteins in vitro. This novel function of ATP was postulated to help regulate proteostasis in vivo. We tested this hypothesis on aggregates found in Xenopus oocyte nucleoli. Our results indicate that ATP has dual roles in the maintenance of protein solubility. We provide evidence of endogenous hydrotropic action of ATP but show that hydrotropic solubilization of nucleolar aggregates is preceded by a destabilizing event. Destabilization is accomplished through an energy dependent process, reliant upon ATP and one or more soluble nuclear factors, or by disruption of a co-aggregate like RNA.

关键词

Xenopus;ATP;oocyte;nucleus;nucleolus;protein aggregation

授权许可

© 2018, Hayes et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

图表
通讯作者
推荐引用方式

Michael H Hayes,Elizabeth H Peuchen,Norman J Dovichi,Daniel L Weeks. Dual roles for ATP in the regulation of phase separated protein aggregates in Xenopus oocyte nucleoli. eLife ,Vol.7(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R Suzuki, K Hotta, K Oka. (2015). Spatiotemporal quantification of subcellular ATP levels in a single HeLa cell during changes in morphology. Scientific Reports.5. DOI: 10.1101/gad.6.7.1153.
[2] EK Boamah, E Kotova, M Garabedian, M Jarnik. et al.(2012). Poly(ADP-Ribose) polymerase 1 (PARP-1) regulates ribosomal biogenesis in Drosophila nucleoli. PLoS Genetics.8. DOI: 10.1101/gad.6.7.1153.
[3] E Boke, M Ruer, M Wühr, M Coughlin. et al.(2016). Amyloid-like Self-Assembly of a cellular compartment. Cell.166:637-650. DOI: 10.1101/gad.6.7.1153.
[4] WW Franke, JA Kleinschmidt, H Spring, G Krohne. et al.(1981). A nucleolar skeleton of protein filaments demonstrated in amplified nucleoli of Xenopus laevis. The Journal of Cell Biology.90:289-299. DOI: 10.1101/gad.6.7.1153.
[5] J Shorter. (2011). The mammalian disaggregase machinery: hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE.6. DOI: 10.1101/gad.6.7.1153.
[6] JG Gall, Z Wu, C Murphy, H Gao. et al.(2004). Structure in the amphibian germinal vesicle. Experimental Cell Research.296:28-34. DOI: 10.1101/gad.6.7.1153.
[7] EI Boyle, S Weng, J Gollub, H Jin. et al.(2004). GO::TermFinder--open source software for accessing gene ontology information and finding significantly enriched gene ontology terms associated with a list of genes. Bioinformatics.20:3710-3715. DOI: 10.1101/gad.6.7.1153.
[8] EJ Gardner, ZF Nizami, CC Talbot, JG Gall. et al.(2012). Stable intronic sequence RNA (sisRNA), a new class of noncoding RNA from the oocyte nucleus of. Genes & Development.26:2550-2559. DOI: 10.1101/gad.6.7.1153.
[9] J Shorter, S Lindquist. (2004). Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science.304:1793-1797. DOI: 10.1101/gad.6.7.1153.
[10] T Meyer, N Voigt. (2017). In search for novel functions of adenosine 5'-triphosphate (ATP) in the heart. Cardiovascular Research.113:e59-e60. DOI: 10.1101/gad.6.7.1153.
[11] SK Maji, MH Perrin, MR Sawaya, S Jessberger. et al.(2009). Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science.325:328-332. DOI: 10.1101/gad.6.7.1153.
[12] A Majumdar, WC Cesario, E White-Grindley, H Jiang. et al.(2012). Critical role of amyloid-like oligomers of Drosophila Orb2 in the persistence of memory. Cell.148:515-529. DOI: 10.1101/gad.6.7.1153.
[13] JC Schwartz, X Wang, ER Podell, TR Cech. et al.(2013). RNA seeds higher-order assembly of FUS protein. Cell Reports.5:918-925. DOI: 10.1101/gad.6.7.1153.
[14] E Kiseleva, SP Drummond, MW Goldberg, SA Rutherford. et al.(2004). Actin- and protein-4.1-containing filaments link nuclear pore complexes to subnuclear organelles in Xenopus oocyte nuclei. Journal of Cell Science.117:2481-2490. DOI: 10.1101/gad.6.7.1153.
[15] M Kato, TW Han, S Xie, K Shi. et al.(2012). Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell.149:753-767. DOI: 10.1101/gad.6.7.1153.
[16] CK Ytting, AT Fuglsang, J Kalervo Hiltunen, AJ Kastaniotis. et al.(2012). Measurements of intracellularATP provide new insight into the regulation of glycolysis in the yeast Saccharomyces cerevisiae. Integr. Biol..4:99-107. DOI: 10.1101/gad.6.7.1153.
[17] M Zernicka-Goetz, J Pines, K Ryan, KR Siemering. et al.(1996). An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development.122:3719-3724. DOI: 10.1101/gad.6.7.1153.
[18] DS Miller, SB Horowitz. (1986). Intracellular compartmentalization of adenosine triphosphate. The Journal of Biological Chemistry.261:13911-13915. DOI: 10.1101/gad.6.7.1153.
[19] M Wühr, T Güttler, L Peshkin, GC McAlister. et al.(2015). The nuclear proteome of a vertebrate. Current Biology.25:2663-2671. DOI: 10.1101/gad.6.7.1153.
[20] D Carroll, CW Lehman. (1991). DNA recombination and repair in oocytes, eggs, and extracts. Methods in Cell Biology.36:467-486. DOI: 10.1101/gad.6.7.1153.
[21] KE Handwerger, JA Cordero, JG Gall. (2005). Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Molecular Biology of the Cell.16:202-211. DOI: 10.1101/gad.6.7.1153.
[22] C Vacher, L Garcia-Oroz, DC Rubinsztein. (2005). Overexpression of yeast hsp104 reduces polyglutamine aggregation and prolongs survival of a transgenic mouse model of Huntington's disease. Human Molecular Genetics.14:3425-3433. DOI: 10.1101/gad.6.7.1153.
[23] MH Hayes, DL Weeks. (2016). Amyloids assemble as part of recognizable structures during oogenesis in Xenopus. Biology Open.5:801-806. DOI: 10.1101/gad.6.7.1153.
[24] ME Harper, S Monemdjou, JJ Ramsey, R Weindruch. et al.(1998). Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. American Journal of Physiology-Endocrinology and Metabolism.275:E197-E206. DOI: 10.1101/gad.6.7.1153.
[25] H Yaginuma, S Kawai, KV Tabata, K Tomiyama. et al.(2014). Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging. Scientific Reports.4. DOI: 10.1101/gad.6.7.1153.
[26] D Chen, S Huang. (2001). Nucleolar components involved in ribosome biogenesis cycle between the nucleolus and nucleoplasm in interphase cells. The Journal of Cell Biology.153:169-176. DOI: 10.1101/gad.6.7.1153.
[27] SU Heinrich, S Lindquist. (2011). Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). PNAS.108:2999-3004. DOI: 10.1101/gad.6.7.1153.
[28] PL Paine, ME Johnson, YT Lau, LJ Tluczek. et al.(1992). The oocyte nucleus isolated in oil retains in vivo structure and functions. BioTechniques.13:238-246. DOI: 10.1101/gad.6.7.1153.
[29] TW Traut. (1994). Physiological concentrations of purines and pyrimidines. Molecular and Cellular Biochemistry.140:1-22. DOI: 10.1101/gad.6.7.1153.
[30] D Tollervey, T Kiss. (1997). Function and synthesis of small nucleolar RNAs. Current Opinion in Cell Biology.9:337-342. DOI: 10.1101/gad.6.7.1153.
[31] NB Nillegoda, J Kirstein, A Szlachcic, M Berynskyy. et al.(2015). Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature.524:247-251. DOI: 10.1101/gad.6.7.1153.
[32] ZA Knight, KM Shokat. (2005). Features of selective kinase inhibitors. Chemistry & Biology.12:621-637. DOI: 10.1101/gad.6.7.1153.
[33] CP Brangwynne, TJ Mitchison, AA Hyman. (2011). Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. PNAS.108:4334-4339. DOI: 10.1101/gad.6.7.1153.
[34] N Miyoshi, H Oubrahim, PB Chock, ER Stadtman. et al.(2006). Age-dependent cell death and the role of ATP in hydrogen peroxide-induced apoptosis and necrosis. Proceedings of the National Academy of Sciences.103:1727-1731. DOI: 10.1101/gad.6.7.1153.
[35] TP Knowles, M Vendruscolo, CM Dobson. (2014). The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology.15:384-396. DOI: 10.1101/gad.6.7.1153.
[36] CF Lee, CP Brangwynne, J Gharakhani, AA Hyman. et al.(2013). Spatial organization of the cell cytoplasm by position-dependent phase separation. Physical Review Letters.111. DOI: 10.1101/gad.6.7.1153.
[37] S Kroschwald, S Maharana, D Mateju, L Malinovska. et al.(2015). Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. eLife.4. DOI: 10.1101/gad.6.7.1153.
[38] RH Wright, A Lioutas, F Le Dily, D Soronellas. et al.(2016). ADP-ribose-derived nuclear ATP synthesis by NUDIX5 is required for chromatin remodeling. Science.352:1221-1225. DOI: 10.1101/gad.6.7.1153.
[39] EM Courchaine, A Lu, KM Neugebauer. (2016). Droplet organelles?. The EMBO Journal.35:1603-1612. DOI: 10.1101/gad.6.7.1153.
[40] J Cox, MY Hein, CA Luber, I Paron. et al.(2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Molecular & Cellular Proteomics.13:2513-2526. DOI: 10.1101/gad.6.7.1153.
[41] A Patel, L Malinovska, S Saha, J Wang. et al.(2017). ATP as a biological hydrotrope. Science.356:753-756. DOI: 10.1101/gad.6.7.1153.
[42] J Cox, N Neuhauser, A Michalski, RA Scheltema. et al.(2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. Journal of Proteome Research.10:1794-1805. DOI: 10.1101/gad.6.7.1153.
[43] CW Lehman, D Carroll. (1993). Isolation of large quantities of functional, cytoplasm-free Xenopus laevis oocyte nuclei. Analytical Biochemistry.211:311-319. DOI: 10.1101/gad.6.7.1153.
[44] C Verheggen, G Almouzni, D Hernandez-Verdun. (2000). The ribosomal RNA processing machinery is recruited to the nucleolar domain before RNA polymerase I during development. The Journal of Cell Biology.149:293-306. DOI: 10.1101/gad.6.7.1153.
[45] EH Peuchen, L Sun, NJ Dovichi. (2016). Optimization and comparison of bottom-up proteomic sample preparation for early-stage Xenopus laevis embryos. Analytical and Bioanalytical Chemistry.408:4743-4749. DOI: 10.1101/gad.6.7.1153.
[46] RD Phair, T Misteli. (2000). High mobility of proteins in the mammalian cell nucleus. Nature.404:604-609. DOI: 10.1101/gad.6.7.1153.
[47] JR Wiśniewski, A Zougman, N Nagaraj, M Mann. et al.(2009). Universal sample preparation method for proteome analysis. Nature Methods.6:359-362. DOI: 10.1101/gad.6.7.1153.
[48] J Cox, M Mann. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology.26:1367-1372. DOI: 10.1101/gad.6.7.1153.
[49] P Lopez-Buesa, C Pfund, EA Craig. (1998). The biochemical properties of the ATPase activity of a 70-kDa heat shock protein (Hsp70) are governed by the C-terminal domains. PNAS.95:15253-15258. DOI: 10.1101/gad.6.7.1153.
[50] B Kar, B Liu, Z Zhou, YW Lam. et al.(2011). Quantitative nucleolar proteomics reveals nuclear re-organization during stress- induced senescence in mouse fibroblast. BMC Cell Biology.12. DOI: 10.1101/gad.6.7.1153.
[51] NR Love, R Thuret, Y Chen, S Ishibashi. et al.(2011). pTransgenesis: a cross-species, modular transgenesis resource. Development.138:5451-5458. DOI: 10.1101/gad.6.7.1153.
[52] AA Hyman, CA Weber, F Jülicher. (2014). Liquid-liquid phase separation in biology. Annual Review of Cell and Developmental Biology.30:39-58. DOI: 10.1101/gad.6.7.1153.
[53] J Berry, CP Brangwynne, M Haataja. (2018). Physical principles of intracellular organization via active and passive phase transitions. Reports on Progress in Physics.81. DOI: 10.1101/gad.6.7.1153.
[54] H Imamura, KP Nhat, H Togawa, K Saito. et al.(2009). Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. PNAS.106:15651-15656. DOI: 10.1101/gad.6.7.1153.
[55] SF Banani, AM Rice, WB Peeples, Y Lin. et al.(2016). Compositional control of Phase-Separated cellular bodies. Cell.166:651-663. DOI: 10.1101/gad.6.7.1153.
[56] J Eastoe, MH Hatzopoulos, PJ Dowding. (2011). Action of hydrotropes and alkyl-hydrotropes. Soft Matter.7. DOI: 10.1101/gad.6.7.1153.
[57] JS Andersen, YW Lam, AK Leung, SE Ong. et al.(2005). Nucleolar proteome dynamics. Nature.433:77-83. DOI: 10.1101/gad.6.7.1153.
[58] S Saad, G Cereghetti, Y Feng, P Picotti. et al.(2017). Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress. Nature Cell Biology.19:1202-1213. DOI: 10.1101/gad.6.7.1153.
[59] S Schreier, SVP Malheiros, E de Paula. (2000). Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochimica Et Biophysica Acta (BBA) - Biomembranes.1508:210-234. DOI: 10.1101/gad.6.7.1153.
[60] K Abravaya, MP Myers, SP Murphy, RI Morimoto. et al.(1992). The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes & Development.6:1153-1164. DOI: 10.1101/gad.6.7.1153.
[61] E Lund, PL Paine. (1990). Nonaqueous isolation of transcriptionally active nuclei from xenopus oocytes. Methods in Enzymology.181:36-43. DOI: 10.1101/gad.6.7.1153.
[62] F Scalenghe, M Buscaglia, C Steinheil, M Crippa. et al.(1978). Large scale isolation of nuclei and nucleoli from vitellogenic oocytes of Xenopus laevis. Chromosoma.66:299-308. DOI: 10.1101/gad.6.7.1153.
[63] M Feric, N Vaidya, TS Harmon, DM Mitrea. et al.(2016). Coexisting liquid phases underlie nucleolar subcompartments. Cell.165:1686-1697. DOI: 10.1101/gad.6.7.1153.
[64] JC Ellis, DD Brown, JW Brown. (2010). The small nucleolar ribonucleoprotein (snoRNP) database. RNA.16:664-666. DOI: 10.1101/gad.6.7.1153.