首页 » 文章 » 文章详细信息
eLife Volume 7 ,2018-05-11
The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity
Microbiology and Infectious Disease
Jun Qin 1 Kailun Wang 1 , 2 Lifan Sun 1 Haiying Xing 1 Sheng Wang 1 , 2 Lin Li 3 She Chen 3 Hui-Shan Guo 1 , 2 Jie Zhang 1
Show affiliations
DOI:10.7554/eLife.34902
Received 2018-01-11, accepted for publication 2018-05-11, Published 2018-05-11
PDF
摘要

10.7554/eLife.34902.001The vascular pathogen Verticillium dahliae infects the roots of plants to cause Verticillium wilt. The molecular mechanisms underlying V. dahliae virulence and host resistance remain elusive. Here, we demonstrate that a secretory protein, VdSCP41, functions as an intracellular effector that promotes V. dahliae virulence. The Arabidopsis master immune regulators CBP60g and SARD1 and cotton GhCBP60b are targeted by VdSCP41. VdSCP41 binds the C-terminal portion of CBP60g to inhibit its transcription factor activity. Further analyses reveal a transcription activation domain within CBP60g that is required for VdSCP41 targeting. Mutations in both CBP60g and SARD1 compromise Arabidopsis resistance against V. dahliae and partially impair VdSCP41-mediated virulence. Moreover, virus-induced silencing of GhCBP60b compromises cotton resistance to V. dahliae. This work uncovers a virulence strategy in which the V. dahliae secretory protein VdSCP41 directly targets plant transcription factors to inhibit immunity, and reveals CBP60g, SARD1 and GhCBP60b as crucial components governing V. dahliae resistance.

关键词

Other;calmodulin-binding protein;plant immunity;effector;Verticillium

授权许可

© 2018, Qin et al
http://creativecommons.org/licenses/by/4.0/This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

通讯作者
推荐引用方式

Jun Qin,Kailun Wang,Lifan Sun,Haiying Xing,Sheng Wang,Lin Li,She Chen,Hui-Shan Guo,Jie Zhang. The plant-specific transcription factors CBP60g and SARD1 are targeted by a Verticillium secretory protein VdSCP41 to modulate immunity. eLife ,Vol.7(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R Li, BT Weldegergis, J Li, C Jung. et al.(2014b). Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. The Plant Cell Online.26:4991-5008. DOI: 10.1038/nplants.2015.140.
[2] DD Zhang, XY Wang, JY Chen, ZQ Kong. et al.(2016). Identification and characterization of a pathogenicity-related gene from. Scientific Reports.6. DOI: 10.1038/nplants.2015.140.
[3] EF Fradin, A Abd-El-Haliem, L Masini, GC van den Berg. et al.(2011). Interfamily transfer of tomato mediates resistance in Arabidopsis. Plant Physiology.156:2255-2265. DOI: 10.1038/nplants.2015.140.
[4] X Du, S Wang, F Gao, L Zhang. et al.(2017). Expression of pathogenesis-related genes in cotton roots in response to PAMP molecules. Science China Life Sciences.60:852-860. DOI: 10.1038/nplants.2015.140.
[5] H Tian, L Zhou, W Guo, X Wang. et al.(2015). Small GTPase Rac1 and its interaction partner Cla4 regulate polarized growth and pathogenicity in. Fungal Genetics and Biology.74:21-31. DOI: 10.1038/nplants.2015.140.
[6] CL Yang, S Liang, HY Wang, LB Han. et al.(2015). Cotton major latex protein 28 functions as a positive regulator of the ethylene responsive factor 6 in defense against. Plant.8:399-411. DOI: 10.1038/nplants.2015.140.
[7] EF Fradin, BP Thomma. (2006). Physiology and molecular aspects of wilt diseases caused by and. Molecular Plant Pathology.7:71-86. DOI: 10.1038/nplants.2015.140.
[8] T Sun, L Busta, Q Zhang, P Ding. et al.(2018). TGACG-BINDING FACTOR 1 (TGA1) and TGA4 regulate salicylic acid and pipecolic acid biosynthesis by modulating the expression of () and (). The New Phytologist.217:344-354. DOI: 10.1038/nplants.2015.140.
[9] T Sun, Y Zhang, Y Li, Q Zhang. et al.(2015). ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications.6. DOI: 10.1038/nplants.2015.140.
[10] D Dou, JM Zhou. (2012). Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host & Microbe.12:484-495. DOI: 10.1038/nplants.2015.140.
[11] J Zhang, W Li, T Xiang, Z Liu. et al.(2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a effector. Cell Host & Microbe.7:290-301. DOI: 10.1038/nplants.2015.140.
[12] SJ Klosterman, KV Subbarao, S Kang, P Veronese. et al.(2011). Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Pathogens.7. DOI: 10.1038/nplants.2015.140.
[13] C Li, X He, X Luo, L Xu. et al.(2014a). Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by by activating expression. Plant Physiology.166:2179-2194. DOI: 10.1038/nplants.2015.140.
[14] I Albert, H Böhm, M Albert, CE Feiler. et al.(2015). An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. Nature Plants.1. DOI: 10.1038/nplants.2015.140.
[15] YJ Gui, JY Chen, DD Zhang, NY Li. et al.(2017). manipulates plant immunity by glycoside hydrolase 12 proteins in conjunction with carbohydrate-binding module 1. Environmental Microbiology.19:1914-1932. DOI: 10.1038/nplants.2015.140.
[16] A Klimes, KF Dobinson. (2006). A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen. Fungal Genetics and Biology.43:283-294. DOI: 10.1038/nplants.2015.140.
[17] L Sun, L Zhu, L Xu, D Yuan. et al.(2014). Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway. Nature Communications.5. DOI: 10.1038/nplants.2015.140.
[18] SC Whisson, PC Boevink, L Moleleki, AO Avrova. et al.(2007). A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature.450:115-118. DOI: 10.1038/nplants.2015.140.
[19] X Dong. (2004). NPR1, all things considered. Current Opinion in Plant Biology.7:547-552. DOI: 10.1038/nplants.2015.140.
[20] PD Spanu, JC Abbott, J Amselem, TA Burgis. et al.(2010). Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science.330:1543-1546. DOI: 10.1038/nplants.2015.140.
[21] D Dou, SD Kale, X Wang, RH Jiang. et al.(2008). RXLR-mediated entry of P effector Avr1b into soybean cells does not require pathogen-encoded machinery. The Plant Cell Online.20:1930-1947. DOI: 10.1038/nplants.2015.140.
[22] S Schornack, M van Damme, TO Bozkurt, LM Cano. et al.(2010). Ancient class of translocated oomycete effectors targets the host nucleus. PNAS.107:17421-17426. DOI: 10.1038/nplants.2015.140.
[23] WC Schnathorst. (1981). Life Cycle and Epidemiology of Verticillium:81-111. DOI: 10.1038/nplants.2015.140.
[24] MC Wildermuth, J Dewdney, G Wu, FM Ausubel. et al.(2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature.414:562-565. DOI: 10.1038/nplants.2015.140.
[25] B Dombrecht, GP Xue, SJ Sprague, JA Kirkegaard. et al.(2007). MYC2 differentially modulates diverse jasmonate-dependent functions in. The Plant Cell Online.19:2225-2245. DOI: 10.1038/nplants.2015.140.
[26] L Xu, W Zhang, X He, M Liu. et al.(2014). Functional characterization of cotton genes responsive to verticillium dahliae through bioinformatics and reverse genetics strategies. Journal of Experimental Botany.65:6679-6692. DOI: 10.1038/nplants.2015.140.
[27] D Godfrey, H Böhlenius, C Pedersen, Z Zhang. et al.(2010). Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif. BMC Genomics.11. DOI: 10.1038/nplants.2015.140.
[28] M Godoy, JM Franco-Zorrilla, J Pérez-Pérez, JC Oliveros. et al.(2011). Improved protein-binding microarrays for the identification of DNA-binding specificities of transcription factors. The Plant Journal.66:700-711. DOI: 10.1038/nplants.2015.140.
[29] BJ Zhou, PS Jia, F Gao, HS Guo. et al.(2012). Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from. PlantMicrobe.25:964-975. DOI: 10.1038/nplants.2015.140.
[30] H Böhm, I Albert, S Oome, TM Raaymakers. et al.(2014). A conserved peptide pattern from a widespread microbial virulence factor triggers pattern-induced immunity in. PLoS Pathogens.10. DOI: 10.1038/nplants.2015.140.
[31] N Bouché, A Yellin, WA Snedden, H Fromm. et al.(2005). Plant-specific calmodulin-binding proteins. Annual Review of Plant Biology.56:435-466. DOI: 10.1038/nplants.2015.140.
[32] H Cui, T Xiang, JM Zhou. (2009). Plant immunity: a lesson from pathogenic bacterial effector proteins. Cellular Microbiology.11:1453-1461. DOI: 10.1038/nplants.2015.140.
[33] TT Zhou, YL Zhao, HS Guo. (2017). Secretory proteins are delivered to the septin-organized penetration interface during root infection by. PLoS Pathogens.13. DOI: 10.1038/nplants.2015.140.
[34] C Nawrath, S Heck, N Parinthawong, JP Métraux. et al.(2002). EDS5, an essential component of salicylic acid-dependent signaling for disease resistance in Arabidopsis, is a member of the MATE transporter family. The Plant Cell Online.14:275-286. DOI: 10.1038/nplants.2015.140.
[35] P Santhanam, BP Thomma. (2013). Sge1 differentially regulates expression of candidate effector genes. Molecular Plant-Microbe Interactions.26:249-256. DOI: 10.1038/nplants.2015.140.
[36] L Wang, K Tsuda, M Sato, JD Cohen. et al.(2009). Arabidopsis CaM binding protein CBP60g contributes to MAMP-induced SA accumulation and is involved in disease resistance against. PLoS.5. DOI: 10.1038/nplants.2015.140.
[37] X Gao, T Wheeler, Z Li, CM Kenerley. et al.(2011). Silencing and compromises cotton resistance to Verticillium wilt. The Plant Journal.66:293-305. DOI: 10.1038/nplants.2015.140.
[38] P Santhanam, HP van Esse, I Albert, L Faino. et al.(2013). Evidence for functional diversification within a fungal NEP1-like protein family. Molecular Plant-Microbe Interactions.26:278-286. DOI: 10.1038/nplants.2015.140.
[39] T Boller, SY He. (2009). Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens. Science.324:742-744. DOI: 10.1038/nplants.2015.140.
[40] L Schaible, OS Cannon, V Waddoups. (1951). Inheritance of resistance to wilt in a tomato cross. Phytopathology.41:986-990. DOI: 10.1038/nplants.2015.140.
[41] GE Vallad, KV Subbarao. (2008). Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of. Phytopathology.98:871-885. DOI: 10.1038/nplants.2015.140.
[42] L Wang, K Tsuda, W Truman, M Sato. et al.(2011). CBP60g and SARD1 play partially redundant critical roles in salicylic acid signaling. The Plant Journal.67:1029-1041. DOI: 10.1038/nplants.2015.140.
[43] X Gao, L Shan. (2013). Functional genomic analysis of cotton genes with agrobacterium-mediated virus-induced gene silencing. Methods in Molecular Biology.975:157-165. DOI: 10.1038/nplants.2015.140.
[44] S DebRoy, R Thilmony, YB Kwack, K Nomura. et al.(2004). A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. PNAS.101:9927-9932. DOI: 10.1038/nplants.2015.140.
[45] T Liu, T Song, X Zhang, H Yuan. et al.(2014). Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nature Communications.5. DOI: 10.1038/nplants.2015.140.
[46] A Djamei, K Schipper, F Rabe, A Ghosh. et al.(2011). Metabolic priming by a secreted fungal effector. Nature.478:395-398. DOI: 10.1038/nplants.2015.140.
[47] X Gao, F Li, M Li, AS Kianinejad. et al.(2013b). Cotton mediates wilt resistance and cell death. Journal of Integrative Plant Biology.55:586-596. DOI: 10.1038/nplants.2015.140.
[48] R de Jonge, HP van Esse, K Maruthachalam, MD Bolton. et al.(2012). Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. PNAS.109:5110-5115. DOI: 10.1038/nplants.2015.140.
[49] S Wang, H Xing, C Hua, HS Guo. et al.(2016). An improved Single-Step cloning strategy simplifies the Agrobacterium tumefaciens-Mediated transformation (ATMT)-Based Gene-Disruption method for verticillium dahliae. Phytopathology.106:645-652. DOI: 10.1038/nplants.2015.140.
[50] J Qin, J Zhao, K Zuo, Y Cao. et al.(2004). Isolation and characterization of an ERF-like gene from. Plant Science.167:1383-1389. DOI: 10.1038/nplants.2015.140.
[51] L Lo Presti, D Lanver, G Schweizer, S Tanaka. et al.(2015). Fungal effectors and plant susceptibility. Annual Review of Plant Biology.66:513-545. DOI: 10.1038/nplants.2015.140.
[52] Y Liu, M Schiff, SP Dinesh-Kumar. (2002). Virus-induced gene silencing in tomato. The Plant Journal.31:777-786. DOI: 10.1038/nplants.2015.140.
[53] C Ottmann, B Luberacki, I Küfner, W Koch. et al.(2009). A common toxin fold mediates microbial attack and plant defense. PNAS.106:10359-10364. DOI: 10.1038/nplants.2015.140.
[54] K Nomura, C Mecey, YN Lee, LA Imboden. et al.(2011). Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in. PNAS.108:10774-10779. DOI: 10.1038/nplants.2015.140.
[55] L Zhang, H Ni, X Du, S Wang. et al.(2017). The -specific protein VdSCP7 localizes to the plant nucleus and modulates immunity to fungal infections. New Phytologist.215:368-381. DOI: 10.1038/nplants.2015.140.
[56] Y Zhang, S Xu, P Ding, D Wang. et al.(2010). Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. PNAS.107:18220-18225. DOI: 10.1038/nplants.2015.140.
[57] P Zhao, YL Zhao, Y Jin, T Zhang. et al.(2014). Colonization process of roots by a green fluorescent protein-tagged isolate of. Protein Cell.5:94-98. DOI: 10.1038/nplants.2015.140.
[58] W Gao, L Long, LF Zhu, L Xu. et al.(2013a). Proteomic and virus-induced gene silencing (VIGS) Analyses reveal that gossypol, brassinosteroids, and jasmonic acid contribute to the resistance of cotton to. Molecular & Cellular Proteomics.12:3690-3703. DOI: 10.1038/nplants.2015.140.
[59] F Gao, BJ Zhou, GY Li, PS Jia. et al.(2010). A glutamic acid-rich protein identified in from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS One.5. DOI: 10.1038/nplants.2015.140.
[60] A Tzima, EJ Paplomatas, P Rauyaree, S Kang. et al.(2010). Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen. Fungal.47:406-415. DOI: 10.1038/nplants.2015.140.
[61] AK Tzima, EJ Paplomatas, P Rauyaree, MD Ospina-Giraldo. et al.(2011). , the sucrose nonfermenting protein kinase gene of , is required for virulence and expression of genes involved in cell-wall degradation. PlantMicrobe.24:129-142. DOI: 10.1038/nplants.2015.140.
[62] EF Fradin, Z Zhang, JC Juarez Ayala, CD Castroverde. et al.(2009). Genetic dissection of wilt resistance mediated by tomato Ve1. Plant Physiology.150:320-332. DOI: 10.1038/nplants.2015.140.
[63] AK Tzima, EJ Paplomatas, DI Tsitsigiannis, S Kang. et al.(2012). The G protein subunit controls virulence and multiple growth- and development-related traits in. Fungal.49:271-283. DOI: 10.1038/nplants.2015.140.
[64] TF Lian, YP Xu, LF Li, XD Su. et al.(2017). Crystal structure of tetrameric MYC2 Reveals the Mechanism of Enhanced Interaction with DNA. Cell Reports.19:1334-1342. DOI: 10.1038/nplants.2015.140.
[65] YL Zhao, TT Zhou, HS Guo. (2016). Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca signaling is required for plant infection by. PLoS Pathogens.12. DOI: 10.1038/nplants.2015.140.
[66] X Liang, P Ding, K Lian, J Wang. et al.(2016). Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife.5. DOI: 10.1038/nplants.2015.140.
[67] YB Li, LB Han, HY Wang, J Zhang. et al.(2016). The thioredoxin GbNRX1 plays a crucial role in homeostasis of apoplastic reactive oxygen species in response to Infection in Cotton. Plant Physiology.170:2392-2406. DOI: 10.1038/nplants.2015.140.
文献评价指标
浏览 185次
下载全文 17次
评分次数 0次
用户评分 0.0分
分享 0次