首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2018 ,2018-05-03
Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates
Research Article
Fujun Zhao 1 Yu Li 1 Zhouyuan Ye 1 Yong Fan 1 Siping Zhang 1 Haifan Wang 1 Yonghong Liu 1
Show affiliations
DOI:10.1155/2018/4680879
Received 2017-10-26, accepted for publication 2018-03-28, Published 2018-03-28
PDF
摘要

The relationships among the generation of acoustic emission, electromagnetic emission, and the fracture stress of rock grain are investigated, which are based on the mechanism of acoustic emission and electromagnetic emission produced in the process of indenting rock. Based on the relationships, the influence of loading rate on the characteristics of acoustic emission and electromagnetic emission of rock fragmentation is further discussed. Experiment on rock braking was carried out with three loading rates of 0.001 mm/s, 0.01 mm/s, and 0.1 mm/s. The results show that the phenomenon of acoustic emission and electromagnetic emission is produced during the process of loading and breaking rock. The wave forms of the two signals and the curve of the cutter indenting load show jumping characteristics. Both curves have good agreement with each other. With the increase of loading rate, the acoustic emission and electromagnetic emission signals are enhanced. Through analysis, it is found that the peak count rate, the energy rate of acoustic emission, the peak intensity, the number of pulses of the electromagnetic emission, and the loading rate have a positive correlation with each other. The experimental results agree with the theoretical analysis. The proposed studies can lead to an in-depth understanding of the rock fragmentation mechanism and help to prevent rock dynamic disasters.

授权许可

Copyright © 2018 Fujun Zhao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Fujun Zhao.School of Resource Environment and Safety Engineering, Hunan University of Science and Technology, Xiangtan 411201, China, hnust.edu.cn.zfjxxn@263.net

推荐引用方式

Fujun Zhao,Yu Li,Zhouyuan Ye,Yong Fan,Siping Zhang,Haifan Wang,Yonghong Liu. Research on Acoustic Emission and Electromagnetic Emission Characteristics of Rock Fragmentation at Different Loading Rates. Shock and Vibration ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. Yang, Q. Yang. (2017). Geometrically nonlinear transient response of laminated plates with nonlinear elastic restraints. Shock and Vibration.2017-9. DOI: 10.1016/0148-9062(93)90041-B.
[2] Z. H. Li, Q. Lou, E. Y. Wang. (2016). Experimental study of acoustic-electric and thermal infrared characteristics of roof rock failure. Journal of China University of Mining Technology.45(6):1098-1103. DOI: 10.1016/0148-9062(93)90041-B.
[3] L. Dong, W. Zou, X. Li, W. Shu. et al.(2018). Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Engineering Fracture Mechanics.5:16818-16828. DOI: 10.1016/0148-9062(93)90041-B.
[4] Z. D. Li, Z. M. Liu, Y. J. Zhao. (1987). Study on attenuation of ultrasonic waves in rocks. Journal of China Coal Society.22(1):77-85. DOI: 10.1016/0148-9062(93)90041-B.
[5] V. Frid. (2001). Calculation of electromagnetic radiation criterion for rockburts hazard forecast in coal mines. Pure and Applied Geophysics.158(5-6):931-944. DOI: 10.1016/0148-9062(93)90041-B.
[6] E. Y. Wang, E. L. Zhao. (2007). Experiment study on electro-magnetic emission character of rock and soil in process of uniaxial compression loading. Journal of Liaoning Technical University Natural Science.26(1):56-58. DOI: 10.1016/0148-9062(93)90041-B.
[7] Z. M. Yuan, Y. K. Ma, Z. Y. He. (1985). Acoustic Emission Technology and Its Application. DOI: 10.1016/0148-9062(93)90041-B.
[8] V. L. Shkuratnik, Y. L. Filimonov, S. V. Kuchurin. (2005). Regularities of acoustic emission in coal samples under triaxial compression. Journal of Mining Science.41(1):44-52. DOI: 10.1016/0148-9062(93)90041-B.
[9] G. C. Bessette. (2008). Modeling blast loading on buried reinforced concrete structures with Zapotec. Shock and Vibration.15(2):137-146. DOI: 10.1016/0148-9062(93)90041-B.
[10] E. L. Zhao, E. Y. Wang, Z. T. Liu. (2010). Numerical simulation of electromagnetic radiation from coal or rock in a state of uniaxial compression. Journal of China University of Mining Technology.39(5):648-651. DOI: 10.1016/0148-9062(93)90041-B.
[11] Q. Huang. (2002). One possible generation mechanism of co-seismic electric signals. Proceedings of the Japan Academy Series B: Physical and Biological Sciences.78(7):173-178. DOI: 10.1016/0148-9062(93)90041-B.
[12] L. J. Dong, J. Wesseloo, Y. Potvin, X. B. Li. et al.(2016). Discriminant models of blasts and seismic events in mine seismology. International Journal of Rock Mechanics and Mining Sciences.86:282-291. DOI: 10.1016/0148-9062(93)90041-B.
[13] P. Ganne, A. Vervoort, M. Wevess. (2007). Quantification of pre-break brittle damage correlation between acoustic emission and observed micro-fracture. International Journal of Mechanics & Mining Sciences.44(5):720-729. DOI: 10.1016/0148-9062(93)90041-B.
[14] J. S. Kim, K. S. Lee, W. J. Cho, H. Choi. et al.(2015). A comparative evaluation of stress–strain and acoustic emission methods for quantitative damage assessments of brittle rock. Rock Mechanics and Rock Engineering.48(2):495-508. DOI: 10.1016/0148-9062(93)90041-B.
[15] E. Y. Wang, X. Q. He, Z. H. Chen. (2009). Coal and Rock Electromagnetic Radiation Technology and Its Application. DOI: 10.1016/0148-9062(93)90041-B.
[16] F. Zhao, H. Wang, Y. Peng, G. Wang. et al.(2012). Experimental research on acoustic emission energy and rock crushing effect under static-dynamic coupling loading. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering.31(7):1363-1368. DOI: 10.1016/0148-9062(93)90041-B.
[17] Z. Q. Guo. (1999). A model of electromagnetic emissions from multicracking extension during rock fracture. Chinese Journal of Geophysics.42(S1):172-177. DOI: 10.1016/0148-9062(93)90041-B.
[18] R. J. Wang, R. Q. Jiang, Han J. Z.. (1988). Hydraulic Percussion Rotary Drilling. DOI: 10.1016/0148-9062(93)90041-B.
[19] X. B. Li, G. X. Wan, Z. L. Zhou. (2009). The relation between the frequency of electromagnetic radiation (EMR) induced by rock fracture and attribute parameters of rock masses. Chinese Journal of Geophysics.52(1):253-259. DOI: 10.1016/0148-9062(93)90041-B.
[20] L. G. Tham, H. Liu, C. A. Tang, P. K. K. Lee. et al.(2005). On tension failure of 2-D rock specimens and associated acoustic emission. Rock Mechanics and Rock Engineering.38(1):1-19. DOI: 10.1016/0148-9062(93)90041-B.
[21] H. Li, C. Yang, B. Li, X. Yin. et al.(2016). Damage evolution and characteristics of ultrasonic velocity and acoustic emission for salt rock under triaxial multilevel loading test. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering.35(4):682-691. DOI: 10.1016/0148-9062(93)90041-B.
[22] Z. X. Wu, J. W. Liu, J. P. Li. (2013). Experimental study on time-frequency characteristics of AE generated during leptynite failure process. Mining and Metallurgical Engineering.33(4):1-4, 10. DOI: 10.1016/0148-9062(93)90041-B.
[23] O. Sano, I. Ito, M. Terada. (1981). Influence of strain rate on dilatancy and strength of Oshima granite under uniaxial compression. Journal of Geophysical Research: Solid Earth.86(B10):9299-9311. DOI: 10.1016/0148-9062(93)90041-B.
[24] L. Dong, D. Sun, X. Li, K. Du. et al.(2017). Theoretical and experimental studies of localization methodology for AE and microseismic sources without pre-measured wave velocity in mines. IEEE Access.5:16818-16828. DOI: 10.1016/0148-9062(93)90041-B.
[25] Z. G. Wang, M. Wang, G. Q. Zhang. (2017). Spatial evolution rule of acoustic emission and fractal features of fractures in curtain body under uniaxial compression. Mining and Metallurgical Engineering.37(1):5-9. DOI: 10.1016/0148-9062(93)90041-B.
[26] X. Li, Q. Wu, M. Tao, L. Weng. et al.(2016). Dynamic brazilian splitting test of ring-shaped specimens with different hole diameters. Rock Mechanics and Rock Engineering.49(10):4143-4151. DOI: 10.1016/0148-9062(93)90041-B.
[27] L. Dong, J. Wesseloo, Y. Potvin, X. Li. et al.(2016). Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression. Rock Mechanics and Rock Engineering.49(1):183-211. DOI: 10.1016/0148-9062(93)90041-B.
[28] W. R. Liu, Z. Q. Yi, A. Y. Yuan. (2017). Particle-discrete-element-method-based research on acoustic emission characteristics and energy evolution laws of surrounding rock in different lithologic roadway. Journal of Mining & Safety Engineering.34(2):363-370. DOI: 10.1016/0148-9062(93)90041-B.
[29] Z. H. Chen, Y. S. Can, G. M. Yu. (1998). Study on electromagnetic emission during rock failure. Journal of Liaoning Technical University Natural Science.17(3):244-248. DOI: 10.1016/0148-9062(93)90041-B.
[30] V. Frid, K. Vozoff. (2005). Electromagnetic radiation induced by mining rock failure. International Journal of Coal Geology.64(1-2):57-65. DOI: 10.1016/0148-9062(93)90041-B.
[31] D. Lockner. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences.30(7):883-899. DOI: 10.1016/0148-9062(93)90041-B.
文献评价指标
浏览 101次
下载全文 14次
评分次数 0次
用户评分 0.0分
分享 0次