首页 » 文章 » 文章详细信息
Journal of Healthcare Engineering Volume 2018 ,2018-04-30
Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review
Review Article
Tianrui Zhao 1 Lei Su 1 Wenfeng Xia 2 , 3
Show affiliations
DOI:10.1155/2018/3182483
Received 2017-11-28, accepted for publication 2018-03-15, Published 2018-03-15
PDF
摘要

Combined ultrasound and photoacoustic imaging has attracted significant interests for intravascular imaging such as atheromatous plaque detection, with ultrasound imaging providing spatial location and morphology and photoacoustic imaging highlighting molecular composition of the plaque. Conventional ultrasound imaging systems utilize piezoelectric ultrasound transducers, which suffer from limited frequency bandwidths and reduced sensitivity with miniature transducer elements. Recent advances on optical methods for both ultrasound generation and detection have shown great promise, as they provide efficient and ultrabroadband ultrasound generation and sensitive and ultrabroadband ultrasound detection. As such, all-optical ultrasound imaging has a great potential to become a next generation ultrasound imaging method. In this paper, we review recent developments on optical ultrasound transmitters, detectors, and all-optical ultrasound imaging systems, with a particular focus on fiber-based probes for intravascular imaging. We further discuss our thoughts on future directions on developing combined all-optical photoacoustic and ultrasound imaging systems for intravascular imaging.

授权许可

Copyright © 2018 Tianrui Zhao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Examples of IVPA and IVUS imaging results of an advanced human atherosclerotic plaque. (a) Histology of the plaque with a calcified area (Ca), periadventitial fat (Pf), and a lipid-rich plaque (∗). (b) Ultrasound image. (c) Photoacoustic images with excitation light at 1210 nm and (d) 1230 nm. Reproduced with permission from [12], Copyright 2011, The Optical Society.

Examples of IVPA and IVUS imaging results of an advanced human atherosclerotic plaque. (a) Histology of the plaque with a calcified area (Ca), periadventitial fat (Pf), and a lipid-rich plaque (∗). (b) Ultrasound image. (c) Photoacoustic images with excitation light at 1210 nm and (d) 1230 nm. Reproduced with permission from [12], Copyright 2011, The Optical Society.

Examples of IVPA and IVUS imaging results of an advanced human atherosclerotic plaque. (a) Histology of the plaque with a calcified area (Ca), periadventitial fat (Pf), and a lipid-rich plaque (∗). (b) Ultrasound image. (c) Photoacoustic images with excitation light at 1210 nm and (d) 1230 nm. Reproduced with permission from [12], Copyright 2011, The Optical Society.

Examples of IVPA and IVUS imaging results of an advanced human atherosclerotic plaque. (a) Histology of the plaque with a calcified area (Ca), periadventitial fat (Pf), and a lipid-rich plaque (∗). (b) Ultrasound image. (c) Photoacoustic images with excitation light at 1210 nm and (d) 1230 nm. Reproduced with permission from [12], Copyright 2011, The Optical Society.

SEM images of multilayer CNTs-PDMS composite films with CNT growth time of 1 min in (a) and 3 min in (b). Reproduced with permission from [28], Copyright 2010, AIP Publishing.

SEM images of multilayer CNTs-PDMS composite films with CNT growth time of 1 min in (a) and 3 min in (b). Reproduced with permission from [28], Copyright 2010, AIP Publishing.

(a) SEM images of the AuNP array. (b) Sketch of the side view of AuNP array on a glass substrate. Reproduced with permission from [32], Copyright 2006, AIP Publishing.

(a) SEM images of the AuNP array. (b) Sketch of the side view of AuNP array on a glass substrate. Reproduced with permission from [32], Copyright 2006, AIP Publishing.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

SEM images of CNTs-PDMS-coated optical fibers using MWCNT-xylene in (a) and (a), inset: side-view, scalebar: 1 μm, MWCNT-gel in (c) and (d). (e) MWCNT-gel/PDMS-coated fiber end (inset, side-view, scale bar: 50 μm). (f) MWCNT-PDMS-coated fiber end. Reproduced with permission from [30], Copyright 2016, John Wiley and Sons.

Major embodiments of fiber optic Fabry-Perot (FP) ultrasound detectors. (a) A schematic illustration of a FP sensor with a cylindric etalon cavity. (b) A gray scale microscopic image of a rounded-tip fiber with a concave etalon cavity. The design of endoscopic imaging probes with (c) forward-looking and (d) sideways-looking configurations. (e) The design of a highly sensitive planoconcave microresonator ultrasound sensor. Reproduced with permission, from [36] for (a); Copyright 2009, AIP Publishing, from [37] for (b); Copyright 2015, Zhang et al. from [38] for (c) and (d); and Copyright 2011, Zhang et al. from [39] for (e), Copyright 2017, Springer Nature.

Major embodiments of fiber optic Fabry-Perot (FP) ultrasound detectors. (a) A schematic illustration of a FP sensor with a cylindric etalon cavity. (b) A gray scale microscopic image of a rounded-tip fiber with a concave etalon cavity. The design of endoscopic imaging probes with (c) forward-looking and (d) sideways-looking configurations. (e) The design of a highly sensitive planoconcave microresonator ultrasound sensor. Reproduced with permission, from [36] for (a); Copyright 2009, AIP Publishing, from [37] for (b); Copyright 2015, Zhang et al. from [38] for (c) and (d); and Copyright 2011, Zhang et al. from [39] for (e), Copyright 2017, Springer Nature.

Major embodiments of fiber optic Fabry-Perot (FP) ultrasound detectors. (a) A schematic illustration of a FP sensor with a cylindric etalon cavity. (b) A gray scale microscopic image of a rounded-tip fiber with a concave etalon cavity. The design of endoscopic imaging probes with (c) forward-looking and (d) sideways-looking configurations. (e) The design of a highly sensitive planoconcave microresonator ultrasound sensor. Reproduced with permission, from [36] for (a); Copyright 2009, AIP Publishing, from [37] for (b); Copyright 2015, Zhang et al. from [38] for (c) and (d); and Copyright 2011, Zhang et al. from [39] for (e), Copyright 2017, Springer Nature.

Major embodiments of fiber optic Fabry-Perot (FP) ultrasound detectors. (a) A schematic illustration of a FP sensor with a cylindric etalon cavity. (b) A gray scale microscopic image of a rounded-tip fiber with a concave etalon cavity. The design of endoscopic imaging probes with (c) forward-looking and (d) sideways-looking configurations. (e) The design of a highly sensitive planoconcave microresonator ultrasound sensor. Reproduced with permission, from [36] for (a); Copyright 2009, AIP Publishing, from [37] for (b); Copyright 2015, Zhang et al. from [38] for (c) and (d); and Copyright 2011, Zhang et al. from [39] for (e), Copyright 2017, Springer Nature.

Major embodiments of fiber optic Fabry-Perot (FP) ultrasound detectors. (a) A schematic illustration of a FP sensor with a cylindric etalon cavity. (b) A gray scale microscopic image of a rounded-tip fiber with a concave etalon cavity. The design of endoscopic imaging probes with (c) forward-looking and (d) sideways-looking configurations. (e) The design of a highly sensitive planoconcave microresonator ultrasound sensor. Reproduced with permission, from [36] for (a); Copyright 2009, AIP Publishing, from [37] for (b); Copyright 2015, Zhang et al. from [38] for (c) and (d); and Copyright 2011, Zhang et al. from [39] for (e), Copyright 2017, Springer Nature.

The principle for a FBG-based ultrasound detector. Coherent light at specific wavelength is reflected.

Examples of two main configurations of conventional IVPA catheters. (a) Ultrasound and laser beams overlap at the target position. (b) Collinear design allows both light and ultrasound propagation share the same path. Reproduced with permission from [13] for (a), Copyright 2010, AIP Publishing, and from [11] for (b), Copyright 2014, Springer Nature.

Examples of two main configurations of conventional IVPA catheters. (a) Ultrasound and laser beams overlap at the target position. (b) Collinear design allows both light and ultrasound propagation share the same path. Reproduced with permission from [13] for (a), Copyright 2010, AIP Publishing, and from [11] for (b), Copyright 2014, Springer Nature.

(a‐b) All-optical ultrasound images of swine aorta tissue using an optical fiber-based FP sensor. T, tunica media; X, cross-talk; B, the base of the tissue mount; SB, side branch; LD, lymph node; V, vessel. (c) and (d) Histological images of aorta sections corresponding to the ultrasound images in (a) and (b), respectively. Scale bar, 2 mm. Reproduced with permission from [45], Copyright 2015, The Optical Society.

(a‐b) All-optical ultrasound images of swine aorta tissue using an optical fiber-based FP sensor. T, tunica media; X, cross-talk; B, the base of the tissue mount; SB, side branch; LD, lymph node; V, vessel. (c) and (d) Histological images of aorta sections corresponding to the ultrasound images in (a) and (b), respectively. Scale bar, 2 mm. Reproduced with permission from [45], Copyright 2015, The Optical Society.

(a‐b) All-optical ultrasound images of swine aorta tissue using an optical fiber-based FP sensor. T, tunica media; X, cross-talk; B, the base of the tissue mount; SB, side branch; LD, lymph node; V, vessel. (c) and (d) Histological images of aorta sections corresponding to the ultrasound images in (a) and (b), respectively. Scale bar, 2 mm. Reproduced with permission from [45], Copyright 2015, The Optical Society.

(a‐b) All-optical ultrasound images of swine aorta tissue using an optical fiber-based FP sensor. T, tunica media; X, cross-talk; B, the base of the tissue mount; SB, side branch; LD, lymph node; V, vessel. (c) and (d) Histological images of aorta sections corresponding to the ultrasound images in (a) and (b), respectively. Scale bar, 2 mm. Reproduced with permission from [45], Copyright 2015, The Optical Society.

(a) Left: schematic illustration of an optical-resolution photoacoustic microscopy system using a highly sensitive fiber microresonator. Right: a representative high-resolution photoacoustic image of the mouse ear vasculature in vivo, demonstrating a large field-of-view. (b) Left: schematic illustration of an all-optical ultrasound imaging system using a highly sensitive fiber microresonator. Right: a representative 3D ultrasound image of ex vivo porcine aorta. Reproduced with permission from [39], Copyright 2017, Springer Nature.

(a) Left: schematic illustration of an optical-resolution photoacoustic microscopy system using a highly sensitive fiber microresonator. Right: a representative high-resolution photoacoustic image of the mouse ear vasculature in vivo, demonstrating a large field-of-view. (b) Left: schematic illustration of an all-optical ultrasound imaging system using a highly sensitive fiber microresonator. Right: a representative 3D ultrasound image of ex vivo porcine aorta. Reproduced with permission from [39], Copyright 2017, Springer Nature.

(a–d) Combined ultrasound and photoacoustic images achieved from the all-optical devices using crystal violet and AuNP composites for hybrid transmitters. Coregistered photoacoustic and ultrasound images were obtained from (a‐b) ex vivo swine abdominal tissue and (c‐d) human aorta. Colour-coded photoacoustic images were superimposed on the corresponding ultrasound images. The fatty regions are indicated with black bars. CR, cork ring; HA, human aorta tissue; MB, metal base. (e) Histological images of the imaged human aorta tissue. T, tunica media; A, adventitia. Reproduced with permission from [33], Copyright 2018, John Wiley and Sons.

The design of the all-optical photoacoustic probe using a microring resonator. Reproduced with permission from [40]. Copyright 2014, The Optical Society.

Schematic diagrams of an ultrasound and photoacoustic dual-modality imaging probe. (a) Ultrasound imaging mode. (b) Photoacoustic imaging mode.

通讯作者

Wenfeng Xia.Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, 67-73 Riding House Street, London W1W 7EJ, UK, ucl.ac.uk;Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, UK, ucl.ac.uk.wenfeng.xia@ucl.ac.uk

推荐引用方式

Tianrui Zhao,Lei Su,Wenfeng Xia. Optical Ultrasound Generation and Detection for Intravascular Imaging: A Review. Journal of Healthcare Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. H. Lee, Y. Lee, J. J. Yoh. (2015). Reduced graphene oxide coated polydimethylsiloxane film as an optoacoustic transmitter for high pressure and high frequency ultrasound generation. Applied Physics Letters.106(8, article 081911). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[2] J. Zhou, N. Wu, S. Bi, X. Wang. et al.Ultrasound generation from an optical fiber sidewall. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[3] H. SadAbadi, S. Badilescu, M. Packirisamy, R. Wüthrich. et al.(2012). PDMS-gold nanocomposite platforms with enhanced sensing properties. Journal of Biomedical Nanotechnology.8(4):539-549. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[4] J. A. Guggenheim, J. Li, T. J. Allen, R. J. Colchester. et al.(2017). Ultrasensitive plano-concave optical microresonators for ultrasound sensing. Nature Photonics.11(11):714-719. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[5] J. Tian, Q. Zhang, M. Han. (2013). Distributed fiber-optic laser-ultrasound generation based on ghost-mode of tilted fiber Bragg gratings. Optics Express.21(5):6109-6114. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[6] E. Z. Zhang, P. C. Beard. A miniature all-optical photoacoustic imaging probe. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[7] E. Zhang, J. Laufer, P. Beard. (2008). Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues. Applied Optics.47(4):561-577. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[8] E. Biagi, F. Margheri, D. Menichelli. (2001). Efficient laser-ultrasound generation by using heavily absorbing films as targets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.48(6):1669-1680. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[9] Y. Hou, J.-S. Kim, S. Ashkenazi, M. O’Donnell. et al.(2006). Optical generation of high frequency ultrasound using two-dimensional gold nanostructure. Applied Physics Letters.89(9, article 093901). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[10] H. W. Baac, J. G. Ok, A. Maxwell, K.-T. Lee. et al.(2012). Carbon-nanotube optoacoustic lens for focused ultrasound generation and high-precision targeted therapy. Scientific Reports.2(1):989. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[11] B. Dong, S. Chen, Z. Zhang, C. Sun. et al.(2014). Photoacoustic probe using a microring resonator ultrasonic sensor for endoscopic applications. Optics Letters.39(15):4372-4375. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[12] B. Wang, J. L. Su, A. B. Karpiouk, K. V. Sokolov. et al.(2010). Intravascular photoacoustic imaging. IEEE Journal of Selected Topics in Quantum Electronics.16(3):588-599. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[13] M. Wu, A. F. W. van der Steen, E. Regar, G. van Soest. et al.(2016). Intravascular photoacoustic imaging of vulnerable atherosclerotic plaque. Interventional Cardiology Review.11(2):120-123. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[14] M. C. Finlay, C. A. Mosse, R. J. Colchester, S. Noimark. et al.(2017). Through-needle all-optical ultrasound imaging : a preclinical swine study. Light: Science & Applications.6(12, article e17103). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[15] P. Beard. (2011). Biomedical photoacoustic imaging. Interface Focus.1:602-631. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[16] X. Huang, M. A. El-Sayed. (2010). Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research.1(1):13-28. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[17] T. Buma, M. Spisar, M. O’donnell. (2001). High-frequency ultrasound array element using thermoelastic expansion in an elastomeric film. Applied Physics Letters.79(4):548-550. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[18] P. Morris, A. Hurrell, A. Shaw, E. Zhang. et al.(2009). A Fabry–Pérot fiber-optic ultrasonic hydrophone for the simultaneous measurement of temperature and acoustic pressure. The Journal of the Acoustical Society of America.125(6):3611-3622. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[19] R. Ansari, E. Zhang, A. E. Desjardins, P. C. Beard. et al.All-optical endoscopic probe for high resolution 3D photoacoustic tomography. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[20] N. Bowden, W. T. S. Huck, K. E. Paul, G. M. Whitesides. et al.(1999). The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Applied Physics Letters.75(17):2557-2559. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[21] X. Zou, N. Wu, Y. Tian, X. Wang. et al.(2014). Broadband miniature fiber optic ultrasound generator. Optics Express.22(15):18119-18127. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[22] V. Daeichin, C. Chen, Q. Ding, M. Wu. et al.(2016). A broadband polyvinylidene difluoride-based hydrophone with integrated readout circuit for intravascular photoacoustic imaging. Ultrasound in Medicine and Biology.42(5):1239-1243. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[23] T. Ma, M. Yu, J. Li, C. E. Munding. et al.(2015). Multi-frequency intravascular ultrasound (IVUS) imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.62(1):97-107. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[24] G. Li, Z. Guo, S.-L. Chen. (2017). Miniature all-optical probe for large synthetic aperture photoacoustic-ultrasound imaging. Optics Express.25(21):25023-25035. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[25] J. Ma, X. Jiang, K. H. Martin, P. A. Dayton. et al.Dual frequency transducers for intravascular ultrasound super-harmonic imaging and acoustic angiography. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[26] E. Z. Zhang, P. C. Beard. Characteristics of optimized fibre-optic ultrasound receivers for minimally invasive photoacoustic detection. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[27] A. A. Plumb, N. T. Huynh, J. Guggenheim, E. Zhang. et al.(2018). Rapid volumetric photoacoustic tomographic imaging with a Fabry-Perot ultrasound sensor depicts peripheral arteries and microvascular vasomotor responses to thermal stimuli. European Radiology.28(3):1037-1045. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[28] Writing Group Members, W. Rosamond, K. Flegal, K. Furie. et al.(2008). Heart disease and stroke statistics—2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation.117(4):e25-e146. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[29] N. G. Pandian, A. Weintraub, S. L. Schwartz, R. Kumar. et al.(1990). Intravascular and intracardiac ultrasound imaging: current research and future directions. Echocardiography.7(4):377-387. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[30] G. L. Raff, M. J. Gallagher, W. W. O’Neill, J. A. Goldstein. et al.(2005). Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. Journal of the American College of Cardiology.46(3):552-557. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[31] A. Feis, C. Gellini, P. R. Salvi, M. Becucci. et al.(2014). Photoacoustic excitation profiles of gold nanoparticles. Photoacoustics.2(1):47-53. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[32] P. K. Jain, K. S. Lee, I. H. el-Sayed, M. A. el-Sayed. et al.(2006). Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The Journal of Physical Chemistry B.110(14):7238-7248. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[33] T. Ma, B. Zhou, T. K. Hsiai, K. K. Shung. et al.(2016). A review of intravascular ultrasound-based multimodal intravascular imaging: the synergistic approach to characterizing vulnerable plaques. Ultrasonic Imaging.38(5):314-331. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[34] X. Huang, S. Neretina, M. A. El-Sayed. (2009). Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials.21(48):4880-4910. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[35] W. Xia, C. A. Mosse, R. J. Colchester, J. M. Mari. et al.Fiber optic photoacoustic probe with ultrasonic tracking for guiding minimally invasive procedures. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[36] Z. Cai, W. Qiu, G. Shao, W. Wang. et al.(2013). A new fabrication method for all-PDMS waveguides. Sensors and Actuators A: Physical.204:44-47. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[37] Y. Cao, J. Hui, A. Kole, P. Wang. et al.(2016). High-sensitivity intravascular photoacoustic imaging of lipid–laden plaque with a collinear catheter design. Scientific Reports.6(1, article 25236). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[38] E. J. Alles, R. J. Colchester, A. E. Desjardins. (2016). Adaptive light modulation for improved resolution and efficiency in all-optical pulse-echo ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.63(1):83-90. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[39] D. Carugo, J. Owen, C. Crake, J. Y. Lee. et al.(2015). Biologically and acoustically compatible chamber for studying ultrasound-mediated delivery of therapeutic compounds. Ultrasound in Medicine and Biology.41(7):1927-1937. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[40] Y. Li, X. Gong, C. Liu, R. Lin. et al.(2015). High-speed intravascular spectroscopic photoacoustic imaging at 1000 A-lines per second with a 0.9-mm diameter catheter. Journal of Biomedical Optics.20(6, article 065006). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[41] V. Daeichin, M. Wu, N. de Jong, A. F. W. van der Steen. et al.(2016). Frequency analysis of the photoacoustic signal generated by coronary atherosclerotic plaque. Ultrasound in Medicine and Biology.42(8):2017-2025. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[42] B.-Y. Hsieh, J. Kim, J. Zhu, S. Li. et al.(2015). A laser ultrasound transducer using carbon nanofibers–polydimethylsiloxane composite thin film. Applied Physics Letters.106(2, article 021902). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[43] D. K. Cai, A. Neyer, R. Kuckuk, H. M. Heise. et al.(2008). Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication. Optical Materials.30(7):1157-1161. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[44] Q. Wu, Y. Okabe. (2012). High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system. Optics Express.20(27):28353-28362. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[45] Y. Hou, J.-S. Kim, S. Ashkenazi, S.-W. Huang. et al.(2007). Broadband all-optical ultrasound transducers. Applied Physics Letters.91(7, article 073507). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[46] X. Li, W. Wei, Q. Zhou, K. K. Shung. et al.(2012). Intravascular photoacoustic imaging at 35 and 80 MHz. Journal of Biomedical Optics.17(10, article 106005). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[47] J. Hui, Y. Cao, Y. Zhang, A. Kole. et al.(2017). Real-time intravascular photoacoustic-ultrasound imaging of lipid-laden plaque in human coronary artery at 16 frames per second. Scientific Reports.7(1):1417. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[48] S. Noimark, R. J. Colchester, R. K. Poduval, E. Maneas. et al.(2018). Polydimethylsiloxane composites for optical ultrasound generation and multimodality imaging. Advanced Functional Materials.28(9, article 1704919). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[49] N. Wu, Y. Tian, X. Zou, V. Silva. et al.(2012). High-efficiency optical ultrasound generation using one-pot synthesized polydimethylsiloxane-gold nanoparticle nanocomposite. Journal of the Optical Society of America B.29(8):2016-2020. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[50] E. Hysi, D. Dopsa, M. C. Kolios. Photoacoustic radio-frequency spectroscopy (PA-RFS): a technique for monitoring absorber size and concentration. . DOI: 10.1161/CIRCULATIONAHA.107.187998.
[51] M. Wu, G. Springeling, M. Lovrak, F. Mastik. et al.(2017). Real-time volumetric lipid imaging in vivo by intravascular photoacoustics at 20 frames per second. Biomedical Optics Express.8(2):943-953. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[52] A. Rosenthal, D. Razansky, V. Ntziachristos. (2011). High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters.36(10):1833-1835. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[53] B.-Y. Hsieh, S.-L. Chen, T. Ling, L. J. Guo. et al.(2010). Integrated intravascular ultrasound and photoacoustic imaging scan head. Optics Letters.35(17):2892-2894. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[54] M. Wu, K. Jansen, A. F. W. van der Steen, G. van Soest. et al.(2015). Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedical Optics Express.6(9):3276-3286. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[55] R. H. Baughman, A. A. Zakhidov, W. A. De Heer. (2002). Carbon nanotubes--the route toward applications. Science.297(5582):787-792. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[56] P. M. Ajayan, O. Z. Zhou. (2001). Applications of carbon nanotubes. Carbon Nanotubes. Topics in Applied Physics:391-425. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[57] E. J. Alles, N. Fook Sheung, S. Noimark, E. Z. Zhang. et al.(2017). A reconfigurable all-optical ultrasound transducer array for 3D endoscopic imaging. Scientific Reports.7(1):1208. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[58] M. Wu, K. Jansen, G. Springeling, A. F. W. van der Steen. et al.(2014). Impact of device geometry on the imaging characteristics of an intravascular photoacoustic catheter. Applied Optics.53(34):8131-8139. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[59] H. Won Baac, J. G. Ok, H. J. Park, T. Ling. et al.(2010). Carbon nanotube composite optoacoustic transmitters for strong and high frequency ultrasound generation. Applied Physics Letters.97(23, article 234104). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[60] R. Saito, G. Dresselhaus, M. S. Dresselhaus. (1998). Physical Properties of Carbon Nanotubes. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[61] K. Jansen, A. F. W. van der Steen, M. Wu, H. M. M. van Beusekom. et al.(2014). Spectroscopic intravascular photoacoustic imaging of lipids in atherosclerosis. Journal of Biomedical Optics.19(2, article 026006). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[62] S. Noimark, R. J. Colchester, B. J. Blackburn, E. Z. Zhang. et al.(2016). Carbon-nanotube-PDMS composite coatings on optical fibers for all-optical ultrasound imaging. Advanced Functional Materials.26(46):8390-8396. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[63] R. J. Colchester, C. A. Mosse, D. S. Bhachu, J. C. Bear. et al.(2014). Laser-generated ultrasound with optical fibres using functionalised carbon nanotube composite coatings. Applied Physics Letters.104(17, article 173502). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[64] P. Wang, T. Ma, M. N. Slipchenko, S. Liang. et al.(2014). High-speed intravascular photoacoustic imaging of lipid-laden atherosclerotic plaque enabled by a 2-kHz barium nitrite Raman laser. Scientific Reports.4(1):6889. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[65] A. B. Karpiouk, B. Wang, S. Y. Emelianov. (2010). Development of a catheter for combined intravascular ultrasound and photoacoustic imaging. Review of Scientific Instruments.81(1, article 014901). DOI: 10.1161/CIRCULATIONAHA.107.187998.
[66] K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis. et al.(2011). Intravascular photoacoustic imaging of human coronary atherosclerosis. Optics Letters.36(5):597-599. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[67] E. J. Alles, S. Noimark, E. Zhang, P. C. Beard. et al.(2016). Pencil beam all-optical ultrasound imaging. Biomedical Optics Express.7(9):3696-3704. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[68] K. Jansen, M. Wu, A. F. W. van der Steen, G. van Soest. et al.(2013). Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging. Optics Express.21(18):21472-21484. DOI: 10.1161/CIRCULATIONAHA.107.187998.
[69] R. J. Colchester, E. Z. Zhang, C. A. Mosse, P. C. Beard. et al.(2015). Broadband miniature optical ultrasound probe for high resolution vascular tissue imaging. Biomedical Optics Express.6(4):1502-1511. DOI: 10.1161/CIRCULATIONAHA.107.187998.
文献评价指标
浏览 111次
下载全文 5次
评分次数 0次
用户评分 0.0分
分享 0次