首页 » 文章 » 文章详细信息
Advances in Condensed Matter Physics Volume 2018 ,2018-05-02
Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure
Research Article
Song Feng 1 , 2 Lian-bi Li 1 Bin Xue 1
Show affiliations
DOI:10.1155/2018/8297650
Received 2017-10-26, accepted for publication 2018-03-20, Published 2018-03-20
PDF
摘要

The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI) micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

授权许可

Copyright © 2018 Song Feng et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Si/SiGe/Si-OI structure.

Two type modulation structures: (a) SOI structure and (b) SiGe-OI structure.

Two type modulation structures: (a) SOI structure and (b) SiGe-OI structure.

The band diagram of Si/SiGe/Si-OI structure under the equilibrium state.

The band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

The band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

The band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

At 1 V forward voltage, the band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

At 1 V forward voltage, the band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

At 1 V forward voltage, the band simulation of three type modulation structures: (a) Si/SiGe/Si-OI structure, (b) SiGe-OI structure, and (c) SOI structure.

The relationship between the carriers concentration and modulation voltage: (a) electron concentration and (b) hole concentration for three structures.

The relationship between the carriers concentration and modulation voltage: (a) electron concentration and (b) hole concentration for three structures.

(a) Schematic diagram of device, (b) LSCM of device, (c) SEM of micro-ring structure, and (d) SEM of device.

(a) Schematic diagram of device, (b) LSCM of device, (c) SEM of micro-ring structure, and (d) SEM of device.

(a) Schematic diagram of device, (b) LSCM of device, (c) SEM of micro-ring structure, and (d) SEM of device.

(a) Schematic diagram of device, (b) LSCM of device, (c) SEM of micro-ring structure, and (d) SEM of device.

The transmission spectrum of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation.

The transmission spectrum of the micro-nano SOI micro-ring electro-optic modulation.

The static modulation of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation.

The static modulation of the micro-nano SOI micro-ring electro-optic modulation.

通讯作者

Lian-bi Li.School of Science, Xi’an Polytechnic University, Xi’an 710048, China, xpu.edu.cn.xpu_lilianbi@163.com

推荐引用方式

Song Feng,Lian-bi Li,Bin Xue. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure. Advances in Condensed Matter Physics ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Q. Fang, J. Song, X. Luo, X. Tu. et al.(2016). Low Loss Fiber-to-Waveguide Converter with a 3-D Functional Taper for Silicon Photonics. IEEE Photonics Technology Letters.28(22):2533-2536. DOI: 10.1063/1.4978513.
[2] H. Zwickel, S. Wolf, C. Kieninger, Y. Ku-Tuvantavida. et al.(2017). Silicon-organic hybrid (SOH) modulators for intensity-modulation / direct-detection links with line rates of up to 120 Gbit/s. Optics Express.25(20):23784-23800. DOI: 10.1063/1.4978513.
[3] W. Hua, S.-X. Liu. (2014). Nonlinear resonance phenomenon of one-dimensional Bose - Einstein condensate under periodic modulation. Chinese Physics B.23(2). DOI: 10.1063/1.4978513.
[4] S. Heidmann, G. Ulliac, N. Courjal, G. Martin. et al.(2017). Characterization and control of the electro-optic phase dispersion in lithium niobate modulators for wide spectral band interferometry applications in the mid-infrared. Applied Optics.56(14):4153-4157. DOI: 10.1063/1.4978513.
[5] K. Nozaki, S. Matsuo, T. Fujii, K. Takeda. et al.(2016). Photonic-crystal nano-photodetector with ultrasmall capacitance for on-chip light-to-voltage conversion without an amplifier. Optica.3(5):483-492. DOI: 10.1063/1.4978513.
[6] Q. Fang, J. Hu, Z. Zhang, H. Chen. et al.A ring-mirrors-integrated silicon photonics arrayed waveguide grating. :1-2. DOI: 10.1063/1.4978513.
[7] N. Hoppe, C. Rothe, A. Celik, M. F. Rosa. et al.(2017). Single waveguide silicon-organic hybrid modulator. Advances in Radio Science.15:141-147. DOI: 10.1063/1.4978513.
[8] R. J. A. Baker, J. Hoffman, P. Schvan, S. P. Voinigescu. et al.SiGe BiCMOS linear modulator drivers with 4.8-Vpp differential output swing for 120-GBaud applications. :260-263. DOI: 10.1063/1.4978513.
[9] J. Fujikata, M. Noguchi, Y. Kim, J. Han. et al.(2018). High-speed and highly efficient Si optical modulator with strained SiGe layer. Applied Physics Express.11(3):032201. DOI: 10.1063/1.4978513.
[10] S. Akiyama, M. Imai, T. Baba, T. Akagawa. et al.(2013). Compact PIN-diode-based silicon modulator using side-wall-grating waveguide. IEEE Journal of Selected Topics in Quantum Electronics.19(6):74-84. DOI: 10.1063/1.4978513.
[11] K. Singh, D. Kaur. (2017). Vertically arrays of Si-LaNiO3/BiFeO3/Au core-shell nano-capacitors for prominent coupled electro-optic effect. Journal of Applied Physics.121(11). DOI: 10.1063/1.4978513.
[12] Z. Zhang, J. Hu, H. Chen, F. Li. et al.(2017). Low-crosstalk silicon photonics arrayed waveguide grating. Chinese Optics Letters.15(4). DOI: 10.1063/1.4978513.
[13] M. Lauermann, S. Wolf, P. C. Schindler, R. Palmer. et al.(2015). 40 GBd 16QAM signaling at 160 Gb/s in a silicon-organic hybrid modulator. Journal of Lightwave Technology.33(6):1210-1216. DOI: 10.1063/1.4978513.
[14] J. Verbist, M. Verplaetse, S. A. Srinivasan, P. De Heyn. et al.Real-Time 100 Gb/s NRZ-OOK transmission with a silicon photonics GeSi electro-Absorption modulator. :29-30. DOI: 10.1063/1.4978513.
[15] M. Streshinsky, R. Ding, A. Novack. 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. .14560428:1-3. DOI: 10.1063/1.4978513.
[16] S. Feng, B. Xue, LB. Li. (2016). Analysis of Si/SiGe/Si double heterojunction band about a noval structure of PIN electronic modulation. Acta Physica Sinica.65(5, article 054201). DOI: 10.1063/1.4978513.
[17] J. Bowers, M. Davenport, S. Liu. (2017). A 20 GHz colliding pulse mode-locked heterogeneous InP-silicon laser. Cleo: Science Innovations.SW4C.5. DOI: 10.1063/1.4978513.
文献评价指标
浏览 99次
下载全文 12次
评分次数 0次
用户评分 0.0分
分享 0次