首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2018 ,2018-03-29
Dynamic Response of Steel Box Girder under Internal Blast Loading
Research Article
Shujian Yao 1 , 2 Nan Zhao 1 , 3 Zhigang Jiang 4 Duo Zhang 2 Fangyun Lu 2
Show affiliations
DOI:10.1155/2018/9676298
Received 2017-08-16, accepted for publication 2017-12-05, Published 2017-12-05
PDF
摘要

This paper aims at investigating the dynamic response of the steel box girder under internal blast loads through experiments and numerical study. Two blast experiments of steel box models under internal explosion were conducted, and then, the numerical methods are introduced and validated. The dynamic response process and propagation of the internal shock wave of a steel box girder under internal blast loading were investigated. The results show that the propagation of the internal shock wave is very complicated. A multi-impact effect is observed since the shock waves are restricted by the box. In addition, the failure modes and the influence of blast position as well as explosive mass were discussed. The holistic failure mode is observed as local failure, and there are two failure modes for the steel box girder's components, large plastic deformation and rupture. The damage features are closely related to the explosive position, and the enhanced shock wave in the corner of the girder will cause severe damage. With the increasing TNT mass, the crack diameter and the deformation degree are all increased. The longitudinal stiffeners restrict the damage to develop in the transverse direction while increase the crack diameter along the stiffener direction.

授权许可

Copyright © 2018 Shujian Yao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Steel box specimen.

Finite element model. (a) Box model. (b) Air and explosive.

Finite element model. (a) Box model. (b) Air and explosive.

Deformation comparison between experimental result and numerical result (the left picture is the experimental result and the right is numerical). (a) 12.8 g TNT. (b) 40.2 g TNT.

Deformation comparison between experimental result and numerical result (the left picture is the experimental result and the right is numerical). (a) 12.8 g TNT. (b) 40.2 g TNT.

The side plate center deflection-time curves obtained through numerical simulations.

Cross section and explosive positions (unit: mm).

Finite element models. (a) 1/2 girder. (b) 2/3 girder.

Finite element models. (a) 1/2 girder. (b) 2/3 girder.

Pressure evolutions of explosion in position 2 (middle cross section, time unit: ms).

(a) The elements’ position and (b) pressure-time curves.

(a) The elements’ position and (b) pressure-time curves.

Fringe plot of displacement and the elements’ position of the deck (top view, unit: m).

Deflection-time curves of the deck.

Response process of explosion in position 4 (the axial longitudinal section, time unit: ms). (a) t = 0.7994. (b) t = 2.7986. (c) t = 5.1991. (d) t = 9.7986.

Response process of explosion in position 4 (the axial longitudinal section, time unit: ms). (a) t = 0.7994. (b) t = 2.7986. (c) t = 5.1991. (d) t = 9.7986.

Response process of explosion in position 4 (the axial longitudinal section, time unit: ms). (a) t = 0.7994. (b) t = 2.7986. (c) t = 5.1991. (d) t = 9.7986.

Response process of explosion in position 4 (the axial longitudinal section, time unit: ms). (a) t = 0.7994. (b) t = 2.7986. (c) t = 5.1991. (d) t = 9.7986.

Fringe plot of the final displacement of the box girder (unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the box girder (unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the box girder (unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the box girder (unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the bottom plate (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the bottom plate (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the bottom plate (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the bottom plate (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the deck (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the deck (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the deck (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of the final displacement of the deck (top view, unit: m). (a) Position 1. (b) Position 2. (c) Position 3. (d) Position 4.

Fringe plot of diaphragm’s displacement (unit: m).

Final damage shape of explosion in position 4 (time unit: ms).

Crevasse diameter of plates in different explosive positions.

Greatest displacement of plates in different explosive positions.

Damage features of different explosive masses in position 2. (a) 10 kg TNT. (b) 23 kg TNT. (c) 36 kg TNT. (d) 50 kg TNT.

Damage features of different explosive masses in position 2. (a) 10 kg TNT. (b) 23 kg TNT. (c) 36 kg TNT. (d) 50 kg TNT.

Damage features of different explosive masses in position 2. (a) 10 kg TNT. (b) 23 kg TNT. (c) 36 kg TNT. (d) 50 kg TNT.

Damage features of different explosive masses in position 2. (a) 10 kg TNT. (b) 23 kg TNT. (c) 36 kg TNT. (d) 50 kg TNT.

Displacement-time curves of the roof.

Crack diameter of the bottom plate.

通讯作者

Shujian Yao.School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan 410075, China, csu.edu.cn;College of Science, National University of Defense Technology, Changsha, Hunan 410073, China, nudt.edu.cn.yaoshujian@gmail.com

推荐引用方式

Shujian Yao,Nan Zhao,Zhigang Jiang,Duo Zhang,Fangyun Lu. Dynamic Response of Steel Box Girder under Internal Blast Loading. Advances in Civil Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Ngo, P. Mendis, A. Gupta, J. Ramsay. et al.(2007). Blast Loading and Blast Effects on Structure-An Review. DOI: 10.1016/0045-7949(93)90507-a.
[2] E. K. C. Tang, H. Hao. (2010). Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations. Engineering Structures.32(10):3180-3192. DOI: 10.1016/0045-7949(93)90507-a.
[3] D. G. Winget, K. A. Marchand, E. B. Williamson. (2005). Analysis and design of critical bridges subjected to blast loads. ASCE Journal of Structural Engineering.131(8):1243-1255. DOI: 10.1016/0045-7949(93)90507-a.
[4] J. Son, H. J. Lee. (2011). Performance of cable-stayed bridge pylons subjected to blast loading. Engineering Structures.33(4):1133-1148. DOI: 10.1016/0045-7949(93)90507-a.
[5] M. S. Gadala, J. Wang. (1998). ALE formulation and its application in solid mechanics. Computer Methods in Applied Mechanics and Engineering.167(1-2):33-35. DOI: 10.1016/0045-7949(93)90507-a.
[6] S. Dey, T. Børvik, O. S. Hopperstad, M. Langseth. et al.(2007). On the influence of constitutive relation in projectile impact of steel plates. International Journal of Impact Engineering.34(3):464-486. DOI: 10.1016/0045-7949(93)90507-a.
[7] W. E. Baker. (1983). Explosion Hazards and Evaluation. DOI: 10.1016/0045-7949(93)90507-a.
[8] G. R. Johnson, W. H. Cook. A constitutive model and data for metals subjected to large strains, high strain rate and high temperatures. . DOI: 10.1016/0045-7949(93)90507-a.
[9] S. J. Yao, D. Zhan, X. G. Chen, F. Y. Lu. et al.(2017). A combined experimental and numerical investigation on the scaling laws for steel box structures subjected to internal blast loading. International Journal of Impact Engineering.102:36-46. DOI: 10.1016/0045-7949(93)90507-a.
[10] LSTC. (2007). LS-DYNA Keyword User’s Manual. DOI: 10.1016/0045-7949(93)90507-a.
[11] Y. Lu, K. Xu. (2007). Prediction of debris bunch velocity of vented concrete structure under internal blast. International Journal of Impact Engineering.34(11):1753-1767. DOI: 10.1016/0045-7949(93)90507-a.
[12] The Blue Ribbon Panel on Bridge and Tunnel Security. (2003). Recommendations for Bridge and Tunnel Security. DOI: 10.1016/0045-7949(93)90507-a.
[13] J. Son. (2008). Performance of cable supported bridge decks subjected to blast loads. . DOI: 10.1016/0045-7949(93)90507-a.
[14] H. Y. Low, H. Hao. (2002). Reliability analysis of direct shear and flexural failure modes of RC slabs under explosive loading. Engineering Structures.24(2):189-198. DOI: 10.1016/0045-7949(93)90507-a.
[15] R. B. Deng, X. L. Jin, X. D. Chen, Z. Li. et al.(2008). Numerical simulation for the damage effect of bridge subjected to blast wave. Journal of Shanghai Jiaotong University.42(11):1927-1930. DOI: 10.1016/0045-7949(93)90507-a.
[16] Transport Canada. (2009). Terrorist Attack Methodology and Tactics Against Bridges and Tunnels: January 2002–December 2008. . DOI: 10.1016/0045-7949(93)90507-a.
[17] H. Lin, A. R. Chen. (2009). Study of performance-based antiterrorism design for bridges. Journal of Tongji University (Natural Science).37(8):999-1002. DOI: 10.1016/0045-7949(93)90507-a.
[18] T. S. Huang. (1994). The introduction of the steel box girder of Dadao-Bridge. Bridges Abroad.2:93-101. DOI: 10.1016/0045-7949(93)90507-a.
[19] W. Riedel, C. Mayrhofer, K. Thoma, A. Stolz. et al.(2010). Engineering and numerical tools for explosion protection of reinforced concrete. International Journal of Protective Structures.1(1):85-101. DOI: 10.1016/0045-7949(93)90507-a.
[20] T. Krauthammer, A. Assadi-Lamouki, H. M. Shanaa. (1993). Analysis of impulsively loaded reinforced concrete structural elements. Computers & Structures.48(5):851-860. DOI: 10.1016/0045-7949(93)90507-a.
[21] S. J. Yao, F. Y. Lu, Z. G. Jiang. (2013). Research on the shock wave and failure modes of steel box subjected to internal blast loading. Acta Armamentarii.34:314-320. DOI: 10.1016/0045-7949(93)90507-a.
[22] A. Alia, M. Souli. (2006). High explosive simulation using multi-material formulations. Applied Thermal Engineering.26(10):1032-1042. DOI: 10.1016/0045-7949(93)90507-a.
[23] M. Souli, N. Aquelet, E. Al-Bahkali, M. Moatamedi. et al.(2013). A mapping method for shock waves using ALE formulation. Computer Modeling in Engineering and Sciences (CMES).91(2):119-133. DOI: 10.1016/0045-7949(93)90507-a.
[24] H. Hao, E. K. C. Tang. (2010). Numerical simulation of a cable-stayed bridge response to blast loads, Part II: damage prediction and FRP strengthening. Engineering Structures.32(10):3193-3205. DOI: 10.1016/0045-7949(93)90507-a.
[25] Z. G. Jiang, X. M. Zhu, B. Yan, S. J. Yao. et al.(2013). Numerical simulation on local failure of steel box girders under blast loading. Journal of Vibration and Shock.32(13):159-164. DOI: 10.1016/0045-7949(93)90507-a.
[26] N. Aquelet, M. Souli, L. Olovsson. (2006). Euler–Lagrange coupling with damping effects: application to slamming problems. Computer Methods in Applied Mechanics and Engineering.195(1–3):110-132. DOI: 10.1016/0045-7949(93)90507-a.
[27] S. Fujikura, M. Bruneau, D. Lopez-Garcia. (2008). Experimental investigation of muliti-hazard resistant bridge piers having concrete-filled steel tube under blast loading. Journal of Bridge Engineering.13(6):586-594. DOI: 10.1016/0045-7949(93)90507-a.
[28] X. Q. Zhou, V. A. Kuznetsov, H. Hao, A. Waschl. et al.(2008). Numerical prediction of concrete slab response to blast loading. International Journal of Impact Engineering.35(10):186-200. DOI: 10.1016/0045-7949(93)90507-a.
文献评价指标
浏览 61次
下载全文 7次
评分次数 0次
用户评分 0.0分
分享 0次