首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2018 ,2018-03-13
Dynamic Characteristic and Fatigue Accumulative Damage of a Cross Shield Tunnel Structure under Vibration Load
Research Article
Qixiang Yan 1 Hang Chen 1 Wenyu Chen 1 Junchen Zhang 1 Shuqi Ma 1 Xi Huang 2
Show affiliations
DOI:10.1155/2018/9525680
Received 2017-09-19, accepted for publication 2018-01-09, Published 2018-01-09
PDF
摘要

This study presents an improved constitutive model for concrete under uniaxial cyclic loading which considers the fatigue stiffness degradation, fatigue strength degradation, and fatigue residual strain increment of concrete fatigue damage. According to the constitutive model, the dynamic response and cumulative damage of the tunnel cross structure under various train operation years were analyzed. The results show that the vibration in the middle of the main tunnel is most violent. With the increase of train operation period, the acceleration in the middle of the transverse passage floor, both sides of the wall corner and the vault increase significantly, and the maximum principal stress increases significantly only in both sides of the wall corner. The compressive damage is mainly distributed at both sides of the wall corner, while tensile damage is distributed in both sides of the inner wall corner. The accumulative damage of the cross structure exhibits a two-stage profile. The size and range of accumulative tensile damage of the connecting transverse passage are greater than those of accumulative compressive damage.

授权许可

Copyright © 2018 Qixiang Yan et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

1. Hang Chen.Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China, swjtu.edu.cn.chenhangssd@163.com
2. Shuqi Ma.Key Laboratory of Transportation Tunnel Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China, swjtu.edu.cn.shuqima@qq.com

推荐引用方式

Qixiang Yan,Hang Chen,Wenyu Chen,Junchen Zhang,Shuqi Ma,Xi Huang. Dynamic Characteristic and Fatigue Accumulative Damage of a Cross Shield Tunnel Structure under Vibration Load. Shock and Vibration ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
15

是否收藏?

参考文献
[1] ABAQUS Inc.. (2007). Abaqus Theory Manual. DOI: 10.1155/2016/9524206.
[2] F. Sidoroff. Description of anisotropic damage application to elasticity. :237-244. DOI: 10.1155/2016/9524206.
[3] W. Qian, D.-Q. Qi, W.-C. Xue. (2008). Full-range analysis on behaviors of concrete beams prestressed with CFRP tendons under fatigue load cycles. Journal of Vibration and Shock.27(5):125-129. DOI: 10.1155/2016/9524206.
[4] Y. S. Petryna, D. Pfanner, F. Stangenberg, W. B. Krätzig. et al.(2002). Reliability of reinforced concrete structures under fatigue. Reliability Engineering & System Safety.77(3):253-261. DOI: 10.1155/2016/9524206.
[5] National Standard of the People’s Republic of China. (2010). GB50010-2010 Code for Design of Concrete Structures. DOI: 10.1155/2016/9524206.
[6] H. Yu, C. Cai, X. Guan, Y. Yuan. et al.(2016). Analytical solution for long lined tunnels subjected to travelling loads. Tunnelling and Underground Space Technology.58:209-215. DOI: 10.1155/2016/9524206.
[7] J. Qiu, Y. Xie, H. Fan, Z. Wang. et al.(2017). Centrifuge modelling of twin-tunnelling induced ground movements in loess strata. Arabian Journal of Geosciences.10(22). DOI: 10.1155/2016/9524206.
[8] M. S. Cao, Q. W. Ren, A. L. Zhai. (2005). Experimental study on fractal characterization in damages of concrete structures. Rock & Soil Mechanics.33(5):2738-2741. DOI: 10.1155/2016/9524206.
[9] J. Huang, P. Huang, X. Zheng. (2016). Experimental study on propagation behavior of main fatigue crack in RC beam strengthened with prestressed cfrp plate. China Railway Science.37(6):27-33. DOI: 10.1155/2016/9524206.
[10] J. O. Holmen. (1982). Fatigue of concrete by constant and variable amplitude loading. ACI Special Publication, Fatigue of Concrete Structures.75(4):71-110. DOI: 10.1155/2016/9524206.
[11] J. S. Zhu, X. C. Zhu. (2012). Study on simplified method for the analysis of fatigue failure process of RC bridges. Journal of Engineering Mechanics.29(5):107-121. DOI: 10.1155/2016/9524206.
[12] Q. Yan, Z. Deng, Y. Zhang, W. Yang. et al.(2017). Failure Characteristics of Joint Bolts in Shield Tunnels Subjected to Impact Loads from a Derailed Train. Shock and Vibration.2017-17. DOI: 10.1155/2016/9524206.
[13] J. X. Lai, X. L. Wang, J. L. Qiu. (2018). A state-of-the-art review of sustainable energy based freeze proof technology for cold-region tunnels in China. Renewable and Sustainable Energy Reviews.82:3554-3569. DOI: 10.1155/2016/9524206.
[14] Q. Wang, J. Wei, X. Liu, G. Xu. et al.(2016). Equivalent static analysis method for fatigue cumulative damage process of reinforced concrete beam. Journal of Central South University (Science and Technology).48(1):247-253. DOI: 10.1155/2016/9524206.
[15] W. B. Shi, L. C. Miao, Z. X. Wang, J. H. Luo. et al.(2015). Settlement behaviors of metro tunnels during the metro operation. Shock and Vibration.2015-11. DOI: 10.1155/2016/9524206.
[16] R. Tepfers, T. Kutti. (1979). Fatigue strength of plain, ordinary, and lightweight concrete. Journal - American Concrete Institute.6(5):635-652. DOI: 10.1155/2016/9524206.
[17] J. Qiu, X. Wang, S. He. (2017). The catastrophic landside in Maoxian County, Sichuan, SW China, on June 24, 2017. Natural Hazards Journal of the International Society for the Prevention & Mitigation of Natural Hazards.89(3):1485-1493. DOI: 10.1155/2016/9524206.
[18] Z. W. Wang, Y. M. Zhao, Q. L. Zhang. (2017). Stochastic damage model for concrete structure of high-speed railway tunnel substrate. China Railway Science.38(1):59-67. DOI: 10.1155/2016/9524206.
[19] J. X. Lai, K. Y. Wang, J. L. Qiu. (2016). Vibration response characteristics of the cross tunnel structure. Shock and Vibration.2016-16. DOI: 10.1155/2016/9524206.
[20] J. Lai, F. Niu, K. Wang, J. Chen. et al.(2016). Dynamic effect of metro-induced vibration on the rammed earth base of the Bell Tower. SpringerPlus.5(1, article no. 935). DOI: 10.1155/2016/9524206.
[21] S. Gharehdash, M. Barzegar. (2015). Numerical modeling of the dynamic behaviour of tunnel lining in shield tunneling. KSCE Journal of Civil Engineering.19(6):1626-1636. DOI: 10.1155/2016/9524206.
[22] F. Ye, C. F. Gou, H. D. Sun, Y. P. Liu. et al.(2014). Model test study on effective ratio of segment transverse bending rigidity of shield tunnel. Tunnelling and Underground Space Technology.41(1):193-205. DOI: 10.1155/2016/9524206.
[23] J. Li, J. Y. Wu. (2005). Elastoplacstic damage constitutive model for concrete based on damage energy release rates, part I: basic formulations. China Civil Engineering Journal(9):14-20. DOI: 10.1155/2016/9524206.
[24] R. M. Wang, G. F. Zhao, Y. P. Song. (1991). Research on compression fatigue performance of concrete. China Civil Engineering Journal.24(4):38-47. DOI: 10.1155/2016/9524206.
[25] Y. J. Park. (1990). Fatigue of concrete under random loadings. Journal of Structural Engineering (United States).116(11):3228-3235. DOI: 10.1155/2016/9524206.
[26] Z. P Lin. (2016). Analysis on dynamic response of overlapped tunnel structure under vibration load. Journal of Railway Science and Engineering.13(9):1789-1795. DOI: 10.1155/2016/9524206.
[27] H. Lai, X. Zhao, Z. Kang, R. Chen. et al.(2017). A new method for predicting ground settlement caused by twin-tunneling under-crossing an existing tunnel. Environmental Earth Sciences.76(21). DOI: 10.1155/2016/9524206.
[28] R. Burdzik, B. Nowak. Identification of the Vibration Environment of Railway Infrastructure. :556-561. DOI: 10.1155/2016/9524206.
[29] J. L. Qiu, H. Q. Liu, J. X. Lai. (2018). Investigating the long term settlement of a tunnel built over improved loessial foundation soil using jet grouting technique. Journal of Performance of Constructed Facilities. DOI: 10.1155/2016/9524206.
[30] R. Zhang, Z. Shi. (2008). Numerical simulation of rebar/concrete interface debonding of FRP strengthened RC beams under fatigue load. Materials and Structures/Materiaux et Constructions.41(10):1613-1621. DOI: 10.1155/2016/9524206.
[31] J.-K. Kim, Y.-Y. Kim. (1996). Experimental study of the fatigue behavior of high strength concrete. Cement and Concrete Research.26(10):1513-1523. DOI: 10.1155/2016/9524206.
[32] T. Balendra, C. G. Koh, Y. C. Ho. (1991). Dynamic response of buildings due to trains in underground tunnels. Earthquake Engineering & Structural Dynamics.20(3):275-291. DOI: 10.1155/2016/9524206.
[33] C. Shi, C. Cao, M. Lei. (2017). Construction technology for a shallow-buried underwater interchange tunnel with a large span. Tunnelling and Underground Space Technology.70:317-329. DOI: 10.1155/2016/9524206.
[34] K. Aas. (1970). Fatigue of concrete beams and columns, Bulltin 70-1. DOI: 10.1155/2016/9524206.
[35] S. Gupta, G. Degrande, G. Lombaert. (2009). Experimental validation of a numerical model for subway induced vibrations. Journal of Sound and Vibration.321(3-5):786-812. DOI: 10.1155/2016/9524206.
[36] Y. S. Petryna, W. B. Krätzig. (2005). Computational framework for long-term reliability analysis of RC structures. Computer Methods Applied Mechanics and Engineering.194(12-16):1619-1639. DOI: 10.1155/2016/9524206.
[37] S. Gupta, H. Van den Berghe, G. Lombaert, G. Degrande. et al.(2010). Numerical modelling of vibrations from a Thalys high speed train in the Groene Hart tunnel. Soil Dynamics and Earthquake Engineering.30(3):82-97. DOI: 10.1155/2016/9524206.
[38] J. Lai, J. Qiu, H. Fan, J. Chen. et al.(2017). Structural safety assessment of existing multiarch tunnel: a case study. Advances in Materials Science and Engineering.2017-11. DOI: 10.1155/2016/9524206.
[39] S. Teng, F. Wang. (2001). Finite element analysis of reinforced concrete deep beams under fatigue loading. ACI Structural Journal.98(3):315-323. DOI: 10.1155/2016/9524206.
[40] J. Lai, S. He, J. Qiu, J. Chen. et al.(2017). Characteristics of seismic disasters and aseismic measures of tunnels in Wenchuan earthquake. Environmental Earth Sciences.76(2, article 94). DOI: 10.1155/2016/9524206.
文献评价指标
浏览 423次
下载全文 87次
评分次数 0次
用户评分 0.0分
分享 15次