首页 » 文章 » 文章详细信息
Journal of Nanotechnology Volume 2018 ,2018-03-15
Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and In Vitro Antitumor Activity
Research Article
Suping Ji 1 Xiao Lin 1 Enjiang Yu 1 Chengyang Dian 1 Xiong Yan 1 Liangyao Li 1 Meimei Zhang 2 Wenchang Zhao 1 Linghui Dian 1 , 3
Show affiliations
DOI:10.1155/2018/9103120
Received 2017-10-17, accepted for publication 2017-12-25, Published 2017-12-25
PDF
摘要

The objective of this study was to prepare curcumin-loaded mixed Soluplus/TPGS micelles (Cur-TPGS-PMs) for oral administration. The Cur-TPGS-PMs showed a mean size of 65.54 ± 2.57 nm, drug encapsulation efficiency over 85%, and drug loading of 8.17%. The Cur-TPGS-PMs were found to be stable in various pH media (pH 1.2 for 2 h, pH 6.8 for 2 h, and pH 7.4 for 6 h). The X-ray diffraction (XRD) patterns illustrated that curcumin was in the amorphous or molecular state within PMs. The In vitro release test indicated that Cur-TPGS-PMs possessed a significant sustained-release property. The cell viability in MCF-7 cells was found to be relatively lower in Cur-TPGS-PM-treated cells as compared to free Cur-treated cells. CLSM imaging revealed that mixed micelles were efficiently absorbed into the cytoplasm region of MCF-7 cells. Therefore, Cur-TPGS-PMs could have the significant value for the chronic breast cancer therapy.

授权许可

Copyright © 2018 Suping Ji et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Effect of TPGS concentration on the size and zeta potential of Cur-TPGS-PMs.

Effect of stirring time on the size and zeta potential of Cur-TPGS-PMs.

Effect of stirring rate on the size and zeta potential of Cur-TPGS-PMs.

Particle size of blank-TPGS-PMs (a), particle size of Cur-TPGS-PMs (b), TEM image of Cur-TPGS-PMs (c), and colloidal solution of Cur-TPGS-PMs (right), in comparison with free Cur in water (left) (d).

Particle size of blank-TPGS-PMs (a), particle size of Cur-TPGS-PMs (b), TEM image of Cur-TPGS-PMs (c), and colloidal solution of Cur-TPGS-PMs (right), in comparison with free Cur in water (left) (d).

Particle size of blank-TPGS-PMs (a), particle size of Cur-TPGS-PMs (b), TEM image of Cur-TPGS-PMs (c), and colloidal solution of Cur-TPGS-PMs (right), in comparison with free Cur in water (left) (d).

Particle size of blank-TPGS-PMs (a), particle size of Cur-TPGS-PMs (b), TEM image of Cur-TPGS-PMs (c), and colloidal solution of Cur-TPGS-PMs (right), in comparison with free Cur in water (left) (d).

XRD patterns of free Cur (a), physical mixture of PMs and Cur (b), Cur-TPGS-PMs (c), and void PMs (d).

Curcumin release rates (%) of free Cur, Cur-PMs, and Cur-TPGS-PMs in pH 1.2 for 2 h and pH 7.4.

Intracellular uptake by MCF-7/Adr cells after treating with varying formulations by flow cytometry (a) and laser scanning confocal microscopy (b).

Intracellular uptake by MCF-7/Adr cells after treating with varying formulations by flow cytometry (a) and laser scanning confocal microscopy (b).

Survival rates of MCF-7 cells after treating with varying formulations. Data are presented as mean ± SD (n=3; P<0.05). (a) Blank-TPGS-PMs. (b) Free Cur; Cur-PMs; Cur-TPGS-PMs.

Survival rates of MCF-7 cells after treating with varying formulations. Data are presented as mean ± SD (n=3; P<0.05). (a) Blank-TPGS-PMs. (b) Free Cur; Cur-PMs; Cur-TPGS-PMs.

通讯作者

Linghui Dian.School of Pharmaceutical Sciences, Guangdong Medical University, Dongguan 523808, China, gdmu.edu.cn;Guangdong Key Laboratory for Research and Development of Natural Drugs, Guangdong Medical University, Zhanjiang 524023, China, gdmu.edu.cn.605911308@qq.com

推荐引用方式

Suping Ji,Xiao Lin,Enjiang Yu,Chengyang Dian,Xiong Yan,Liangyao Li,Meimei Zhang,Wenchang Zhao,Linghui Dian. Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and In Vitro Antitumor Activity. Journal of Nanotechnology ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
13

是否收藏?

参考文献
[1] X. Y. Li, Y. Zhao, M. G. Sun. (2014). Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials.35(21):5591-5604. DOI: 10.1016/j.lfs.2005.12.007.
[2] R. N. Shamma, M. Basha. (2013). Soluplus®: a novel polymeric solubilizer for optimization of carvedilol solid dispersions: formulation design and effect of method of preparation. Powder Technology.237:406-414. DOI: 10.1016/j.lfs.2005.12.007.
[3] Z. Popovic, W. Liu, V. P. Chauhan. (2010). A nanoparticle size series for in vivo fluorescence imaging. Angewandte Chemie International Edition.49(46):8649-8652. DOI: 10.1016/j.lfs.2005.12.007.
[4] Y. Y. Guo, J. Luo, S. W. Tan. (2013). The applications of Vitamin E TPGS in drug delivery. European Journal of Pharmaceutical Sciences.49(2):175-186. DOI: 10.1016/j.lfs.2005.12.007.
[5] H. H. Tonnesen, J. Karlsen. (1985). Studies on curcumin and curcuminoids. Zeitschrift für Lebensmittel-Untersuchung und Forschung.180(5):402-404. DOI: 10.1016/j.lfs.2005.12.007.
[6] S. S. Feng, L. Mei, P. Anitha, C. W. Gan. et al.(2009). Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials.30(19):3297-3306. DOI: 10.1016/j.lfs.2005.12.007.
[7] H. Cabral, Y. Matsumoto, K. Mizuno. (2011). Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology.6(12):815-823. DOI: 10.1016/j.lfs.2005.12.007.
[8] C. M. Correa, D. A. Shoskes, P. Sanchez. (2006). Combination treatment with curcumin and quercetin of adenomas in familial adenomatous polyposis. Clinical Gastroenterology and Hepatology.4(8):1035-1038. DOI: 10.1016/j.lfs.2005.12.007.
[9] R. C. Srimal. (1997). Turmeric: a brief review of medicinal properties. Fitoterapia.68:483-493. DOI: 10.1016/j.lfs.2005.12.007.
[10] A. L. Cheng, J. K. Lin, M. M. Hsu. (2001). Phase I chemoprevention clinical trial of curcumin, a chemopreventive agent, in patients with high risk or pre-malignant lesions. Anticancer Research.21(4):2895-2900. DOI: 10.1016/j.lfs.2005.12.007.
[11] Y. J. Wang, M. H. Pan, A. L. Cheng. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis.15(12):1867-1876. DOI: 10.1016/j.lfs.2005.12.007.
[12] A. Duvoix, R. Blasius, S. Delhalle. (2005). Chemopreventive and therapeutic effects of curcumin. Cancer Letters.223(2):181-190. DOI: 10.1016/j.lfs.2005.12.007.
[13] R. K. Maheshwari, A. K. Singh, J. Gaddipati, R. C. Srimal. et al.(2006). Multiple biological activities of curcumin: a short review. Life Sciences.78(18):2081-2087. DOI: 10.1016/j.lfs.2005.12.007.
[14] Z. Sezgin, N. Yuksel, T. Baykara. (2007). Investigation of pluronic and PEG-PE micelles as carriers of meso-tetraphenyl porphine for oral administration. International Journal of Pharmaceutics.332(1-2):161-167. DOI: 10.1016/j.lfs.2005.12.007.
[15] F. S. T. Mirakabad, A. Akbarzadeh, M. Milani. (2014). A comparison between the cytotoxic effects of free curcumin and curcumin-loaded PLGA-PEG nanoparticles on the MCF-7 human breast cancer cell line. Artificial Cells, Nanomedicine, and Biotechnology.44(1):423-430. DOI: 10.1016/j.lfs.2005.12.007.
[16] K. Hu, X. Huang, Y. Gao, X. Huang. et al.(2015). Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles. Food Chemistry.182:275-281. DOI: 10.1016/j.lfs.2005.12.007.
[17] M. Larsson, A. Hill, J. Duffy. (2012). Suspension stability: why particle size, zeta potential and rheology are important. Annual Transactions of the Nordc Rheology Society.20:209-214. DOI: 10.1016/j.lfs.2005.12.007.
[18] D. R. Kalaria, G. Sharma, V. Beniwal, M. N. V. Ravi Kumar. et al.(2009). Design of biodegradable nanoparticles for oral delivery of doxorubicin: in vivo pharmacokinetics and toxicity studies in rats. Pharmaceutical Research.26(3):492-501. DOI: 10.1016/j.lfs.2005.12.007.
[19] H. Hillaireau, P. Couvreur. (2009). Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences.66(17):2873-2896. DOI: 10.1016/j.lfs.2005.12.007.
[20] B. B. Aggarwal, A. Kumar, A. C. Bharti. (2003). Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Research.23(1):363-398. DOI: 10.1016/j.lfs.2005.12.007.
[21] L. H. Dian, E. J. Yu, X. N. Chen. (2014). Enhancing oral bioavailability of quercetin using novel soluplus polymeric micelles. Nanoscale Research Letters.9(1):648-659. DOI: 10.1016/j.lfs.2005.12.007.
[22] K. Kataoka, A. Harada, Y. Nagasaki. (2012). Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced Drug Delivery Reviews.64:37-48. DOI: 10.1016/j.lfs.2005.12.007.
[23] L. C. Chen, Y. C. Chen, C. Y. Su, W.-P. Wong. et al.(2016). Development and characterization of lecithin-based self-assembling mixed polymeric micellar (saMPMs) drug delivery systems for curcumin. Scientific Reports.6(1):37122-37133. DOI: 10.1016/j.lfs.2005.12.007.
[24] E. Zimmermann, R. H. Müller. (2001). Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media. European Journal of Pharmaceutics and Biopharmaceutics.52(2):203-210. DOI: 10.1016/j.lfs.2005.12.007.
[25] A. B. E. Attia, Z. Y. Ong, J. L. Hedrick. (2011). Mixed micelles self-assembled from block copolymers for drug delivery. Current Opinion in Colloid and Interface Science.16(3):182-194. DOI: 10.1016/j.lfs.2005.12.007.
[26] Z. Wang, Y. Zhang, S. Banerjee. (2006). Notch-1 down-regulation by curcumin is associated with the inhibition of cell growth and the induction of apoptosis in pancreatic cancer cells. Cancer.106(11):2503-2513. DOI: 10.1016/j.lfs.2005.12.007.
[27] M. J. Shieh, C. Y. Hsu, L. Y. Huang, H.-Y. Chen. et al.(2011). Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. Journal of Controlled Release.152(3):418-425. DOI: 10.1016/j.lfs.2005.12.007.
[28] S. Ali, N. Langley, D. Djuric, K. Kolter. et al.Eye on excipients. . DOI: 10.1016/j.lfs.2005.12.007.
[29] L. Bromberg. (2008). Polymeric micelles in oral chemotherapy. Journal of Controlled Release.128(2):89-112. DOI: 10.1016/j.lfs.2005.12.007.
[30] S. L. Ari, L. Strier, D. Kazanov. (2005). Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clinical Cancer Research.11(18):6738-6744. DOI: 10.1016/j.lfs.2005.12.007.
文献评价指标
浏览 168次
下载全文 51次
评分次数 0次
用户评分 0.0分
分享 13次