首页 » 文章 » 文章详细信息
International Journal of Photoenergy Volume 2018 ,2018-03-15
Phase Distribution for Subcooled Flow Boiling in an Inclined Circular Tube
Research Article
Wei Bao 1 JianJun Xu 1 TianZhou Xie 1 BingDe Chen 1 YanPing Huang 1 DianChuan Xing 1
Show affiliations
DOI:10.1155/2018/7061826
Received 2017-09-28, accepted for publication 2018-01-04, Published 2018-01-04
PDF
摘要

An experimental investigation of phase distribution for subcooled flow boiling in an inclined circular tube (i.d. 24 mm) was conducted in this paper. The local interfacial parameters were measured by a double-sensor optical fiber probe, and the measurements were performed on three different directions in the inclined tube cross section. The experiment shows that the phase distribution under the inclined condition is different from the phase distribution under the vertical condition. The profiles skewed highly for 90° and 45° direction in the tube cross section, whereas the profile was also symmetrical at 0° direction. These results can be explained by the fact that buoyancy caused the bubbles to move toward the top of the tube cross section under inclined condition. In addition, the typical distributions were also influenced by the inclination angles.

授权许可

Copyright © 2018 Wei Bao et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

JianJun Xu.CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041, China, npic.net.cn.xujjun2000@sohu.com

推荐引用方式

Wei Bao,JianJun Xu,TianZhou Xie,BingDe Chen,YanPing Huang,DianChuan Xing. Phase Distribution for Subcooled Flow Boiling in an Inclined Circular Tube. International Journal of Photoenergy ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
15

是否收藏?

参考文献
[1] S. T. Revankar, M. Ishii. (1992). Local interfacial area measurement in bubbly flow. International Journal of Heat and Mass Transfer.35(4):913-925. DOI: 10.1016/j.cej.2010.03.012.
[2] W. Bao, B. D. Chen, J. J. Xu, T. Z. Xie. et al.Experimental study on the local interfacial characteristic of subcooled flow boiling under inclined condition. . DOI: 10.1016/j.cej.2010.03.012.
[3] A. Hasan, R. P. Roy, S. P. Kalra. (1991). Some measurements in subcooled flow boiling of refrigerant-113. Journal of Heat Transfer.113(1):216. DOI: 10.1016/j.cej.2010.03.012.
[4] Q. Wu, M. Ishii. (1999). Sensitivity study on double-sensor conductivity probe for the measurement of interfacial area concentration in bubbly flow. International Journal of Multiphase Flow.25(1):155-173. DOI: 10.1016/j.cej.2010.03.012.
[5] D. Xing, C. Yan, L. Sun, J. Liu. et al.(2013). Experimental study of interfacial parameter distributions in upward bubbly flow under vertical and inclined conditions. Experimental Thermal and Fluid Science.47:117-125. DOI: 10.1016/j.cej.2010.03.012.
[6] K. Sun, M. Zhang, X. Chen. (2000). Local measurement of gas-liquid bubbly flow with a double-sensor probe. Chinese Journal of Chemical Engineering.8:33-40. DOI: 10.1016/j.cej.2010.03.012.
[7] T. Hibiki, M. Ishii. (1999). Experimental study on interfacial area transport in bubbly two-phase flows. International Journal of Heat and Mass Transfer.42(16):3019-3035. DOI: 10.1016/j.cej.2010.03.012.
[8] T. Lee, R. Situ, T. Hibiki, H. Park. et al.(2009). Axial developments of interfacial area and void concentration profiles in subcooled boiling flow of water. International Journal of Heat and Mass Transfer.52(1-2):473-487. DOI: 10.1016/j.cej.2010.03.012.
[9] T. Hibiki, M. Ishii, Z. Xiao. (2001). Axial interfacial area transport of vertical bubbly flows. International Journal of Heat and Mass Transfer.44(10):1869-1888. DOI: 10.1016/j.cej.2010.03.012.
[10] R. P. Roy, V. Velidandla. (1994). Local measurements in the two-phase region of turbulent subcooled boiling flow. Journal of Heat Transfer.116(3):660. DOI: 10.1016/j.cej.2010.03.012.
[11] X. Z. Shen, R. Matsui, K. Mishima, H. Nakamura. et al.(2010). Distribution parameter and drift velocity for two-phase flow in a large diameter pipe. Nuclear Engineering and Design.240(12):3991-4000. DOI: 10.1016/j.cej.2010.03.012.
[12] R. Situ, T. Hibiki, X. D. Sun, Y. Mi. et al.(2004). Axial development of subcooled boiling flow in an internally heated annulus. Experiments in Fluids.37(4):589-603. DOI: 10.1016/j.cej.2010.03.012.
[13] K. Sekoguchi, H. Fukui, Y. Sato. Flow boiling in subcooled and low quality regions heat transfer and local void fraction. .4:180-184. DOI: 10.1016/j.cej.2010.03.012.
[14] K. Spindler, E. Hahne. (1999). An experimental study of the void fraction distribution in adiabatic water-air two-phase flows in an inclined tube. International Journal of Thermal Sciences.38(4):305-314. DOI: 10.1016/j.cej.2010.03.012.
[15] A. Abdulahi, L. Abdulkareem, S. Sharaf, M. Abdulkadir. et al.Investigating the effect of pipe inclination on two-phase gas–liquid flows using advanced instrumentation. . DOI: 10.1016/j.cej.2010.03.012.
[16] V. Hernandez-Perez. (2008). Gas–Liquid Two-Phase Flow in Inclined Pipes [Ph. D Thesis]. DOI: 10.1016/j.cej.2010.03.012.
[17] X. Shen, Y. Saito, K. Mishima, H. Nakamura. et al.(2006). A study on the characteristics of upward air-water two-phase flow in a large diameter pipe. Experimental Thermal and Fluid Science.31(1):21-36. DOI: 10.1016/j.cej.2010.03.012.
[18] X. Shen, K. Mishima. (2005). Two-phase phase distribution in a vertical large diameter pipe. International Journal of Heat and Mass Transfer.48(1):211-225. DOI: 10.1016/j.cej.2010.03.012.
[19] X. D. Sun, T. R. Smith, S. Kim, M. Ishii. et al.(2002). Interfacial area of bubbly flow in a relatively large diameter pipe. Experimental Thermal and Fluid Science.27(1):97-109. DOI: 10.1016/j.cej.2010.03.012.
[20] B. J. Yun, B. U. Bae, D. J. Euh, G. C. Park. et al.(2010). Characteristics of the local bubble parameters of a subcooled boiling flow in an annulus. Nuclear Engineering and Design.240(9):2295-2303. DOI: 10.1016/j.cej.2010.03.012.
[21] T. Hibiki, M. Ishii. (2002). Interfacial area concentration of bubbly flow systems. Chemical Engineering Science.57(18):3967-3977. DOI: 10.1016/j.cej.2010.03.012.
[22] S. Kim, M. Ishii, Q. Wu, D. McCreary. et al.(2002). Interfacial structures of confined air-water two-phase bubbly flow. Experimental Thermal and Fluid Science.26(5):461-472. DOI: 10.1016/j.cej.2010.03.012.
[23] J. Y. Xu, Y. X. Wu, Z. H. Shi, L. Y. Lao. et al.(2007). Studies on two-phase co-current air non-Newtonian shear-thinning fluid flows in inclined smooth pipes. International Journal of Multiphase Flow.33(9):948-969. DOI: 10.1016/j.cej.2010.03.012.
[24] S. L. Kiambi, H. K. Kiriamiti, A. Kumar. (2011). Characterization of two phase flows in chemical engineering reactors. Flow Measurement and Instrumentation.22(4):265-271. DOI: 10.1016/j.cej.2010.03.012.
[25] J. Garnier, E. Manon, G. Cubizolles. (2001). Local measurements on flow boiling of refrigerant 12 in a vertical tube. Multiphase Science and Technology.13(1-2):111. DOI: 10.1016/j.cej.2010.03.012.
[26] M. Higuchi, T. Saito. (2010). Quantitative characterizations of long-period fluctuations in a large-diameter bubble column based on point-wise void fraction measurements. Chemical Engineering Journal.160(1):284-292. DOI: 10.1016/j.cej.2010.03.012.
[27] S. Wongwises, M. Pipathattakul. (2006). Flow pattern, pressure drop and void fraction of two-phase gas–liquid flow in an inclined narrow annular channel. Experimental Thermal and Fluid Science.30(4):345-354. DOI: 10.1016/j.cej.2010.03.012.
[28] Q. Sun. (2004). Phase Distribution for Low Mass Flux Subcooled Boiling Flow [Ph. D Thesis]. DOI: 10.1016/j.cej.2010.03.012.
[29] J. G. Jing, M. Y. Zhang, X. J. Chen. (1994). A study on flow pattern transitions for gas–liquid two-phase upward flow in an inclined tube. Journal of Xi'an Jiaotong University.28:143-150. DOI: 10.1016/j.cej.2010.03.012.
文献评价指标
浏览 69次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 15次