首页 » 文章 » 文章详细信息
International Journal of Photoenergy Volume 2018 ,2018-03-13
Grid-Connected Semitransparent Building-Integrated Photovoltaic System: The Comprehensive Case Study of the 120 kWp Plant in Kunming, China
Research Article
Yunfeng Wang 1 Ming Li 1 Reda Hassanien Emam Hassanien 1 , 2 Xun Ma 1 Guoliang Li 1
Show affiliations
DOI:10.1155/2018/6510487
Received 2017-09-11, accepted for publication 2017-12-14, Published 2017-12-14
PDF
摘要

A 120 kWp building-integrated photovoltaic (BIPV) system was installed on the south facade of the Solar Energy Research Institute building in Yunnan Normal University. The area of the curtain wall was 1560 m2 (26 m × 60 m), which consisted of 720 semitransparent monocrystalline silicon double-glazing PV panels. This paper studied the yearly and monthly variations of power generation in terms of solar data and meteorological parameters. The total amount of power generation of the BIPV system measured from October 2014 to September 2015 was 64.607 MWh, and the simulation results with TRNSYS (Transient Systems Simulation Program) provided the 75.515 MWh predicted value of annual electricity production with the meteorological database of Meteonorm, while, based on the average value of the performance ratio (PR) of 60% and the life cycle assessment (LCA) of the system, the energy payback time (EPBT) of 9.38 years and the potential for pollutant emission reductions have been evaluated and the environmental cost is RMB ¥0.01053 per kWh. Finally, an economic analysis was carried out; the net present value (NPV) and the economic payback time of the BIPV system were estimated to be RMB ¥359,347 and 15 years, respectively.

授权许可

Copyright © 2018 Yunfeng Wang et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Yunnan Normal University BIPV system.

The semitransparent double-glazing PV module.

The inside view of the PV curtain wall.

The ventilation blinds at the top and bottom of the PV curtain wall.

The ventilation blinds at the top and bottom of the PV curtain wall.

The connection schematic diagram of the system.

Amount of monthly power generation.

(a) The average operating temperature of PV modules and (b) the air temperature in the gap between the PV curtain wall and the exterior wall of the building.

(a) The average operating temperature of PV modules and (b) the air temperature in the gap between the PV curtain wall and the exterior wall of the building.

Solar radiation intensity on the vertical surface of the PV curtain wall.

Daily December power generation.

Power generation compared in the same month of different years.

Scheme of the TRNSYS PV model.

TRNSYS PV model validation for the power output of a day.

Predicted monthly BIPV power output using the TRNSYS model.

通讯作者

Xun Ma.Solar Energy Research Institute, Yunnan Normal University, Kunming, China, ynnu.edu.cn.maxun80313@126.com

推荐引用方式

Yunfeng Wang,Ming Li,Reda Hassanien Emam Hassanien,Xun Ma,Guoliang Li. Grid-Connected Semitransparent Building-Integrated Photovoltaic System: The Comprehensive Case Study of the 120 kWp Plant in Kunming, China. International Journal of Photoenergy ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
15

是否收藏?

参考文献
[1] B. Norton, P. C. Eames, T. K. Mallick, M. J. Huang. et al.(2011). Enhancing the performance of building integrated photovoltaics. Solar Energy.85(8):1629-1664. DOI: 10.1016/j.enbuild.2007.03.007.
[2] D. H. W. Li, T. N. T. Lam, W. W. H. Chan, A. H. L. Mak. et al.(2009). Energy and cost analysis of semi-transparent photovoltaic in office buildings. Applied Energy.86(5):722-729. DOI: 10.1016/j.enbuild.2007.03.007.
[3] G. C. Bakos, M. Soursos. (2002). Technical feasibility and economic viability of a grid-connected PV installation for low cost electricity production. Energy and Buildings.34(7):753-758. DOI: 10.1016/j.enbuild.2007.03.007.
[4] L. Pei. (2015). The study on eco-design of high-rise residential buildings in Wuhan based on energy simulation and life cycle assessment. DOI: 10.1016/j.enbuild.2007.03.007.
[5] N. Aste, C. Del Pero, F. Leonforte. (2014). PV technologies performance comparison in temperate climates. Solar Energy.109:1-10. DOI: 10.1016/j.enbuild.2007.03.007.
[6] (2013). IEA World Energy Outlook 2013. DOI: 10.1016/j.enbuild.2007.03.007.
[7] B. Celik, E. Karatepe, S. Silvestre, N. Gokmen. et al.(2015). Analysis of spatial fixed PV arrays configurations to maximize energy harvesting in BIPV applications. Renewable Energy.75:534-540. DOI: 10.1016/j.enbuild.2007.03.007.
[8] S. Li, J. Joe, J. Hu, P. Karava. et al.(2015). System identification and model-predictive control of office buildings with integrated photovoltaic-thermal collectors, radiant floor heating and active thermal storage. Solar Energy.113:139-157. DOI: 10.1016/j.enbuild.2007.03.007.
[9] (2009). Solar Energy Laboratory User Manual: TRNSYS 17 a TRaNsient SYstem Simulation Program – Volume 4 – Mathematical Reference.4. DOI: 10.1016/j.enbuild.2007.03.007.
[10] Y. Li. (2015). Life cycle assessment of crystalline silicon modules in China. DOI: 10.1016/j.enbuild.2007.03.007.
[11] D. H. W. Li, S. K. H. Chow, E. W. M. Lee. (2013). An analysis of a medium size grid-connected building integrated photovoltaic (BIPV) system using measured data. Energy and Buildings.60:383-387. DOI: 10.1016/j.enbuild.2007.03.007.
[12] T. Hong, C. Koo, J. Park, H. S. Park. et al.(2014). A GIS (geographic information system)-based optimization model for estimating the electricity generation of the rooftop PV (photovoltaic) system. Energy.65:190-199. DOI: 10.1016/j.enbuild.2007.03.007.
[13] S. Li Causi, S. Castello, F. De Lia. ENEA role in the Italian roof-top programme. .3:2644-2647. DOI: 10.1016/j.enbuild.2007.03.007.
[14] A. G. Hestnes. (1999). Building integration of solar energy systems. Solar Energy.67(4–6):181-187. DOI: 10.1016/j.enbuild.2007.03.007.
[15] J. X. Zhang, G. F. Zhu. (2014). Comparative studies of photolvoltaic power generation and coal-fired power generation base on life cycle assessment. Environmental Science and Management.39:86-90. DOI: 10.1016/j.enbuild.2007.03.007.
[16] R. Kannan, K. C. Leong, R. Osman, H. K. Ho. et al.(2007). Life cycle energy, emissions and cost inventory of power generation technologies in Singapore. Renewable and Sustainable Energy Reviews.11(4):702-715. DOI: 10.1016/j.enbuild.2007.03.007.
[17] A. F. Sherwani, J. A. Usmani. (2010). Life cycle assessment of solar PV based electricity generation systems: a review. Renewable and Sustainable Energy Reviews.14(1):540-544. DOI: 10.1016/j.enbuild.2007.03.007.
[18] S. Kang, T. Hwang, J. T. Kim. (2012). Theoretical analysis of the blinds integrated photovoltaic modules. Energy and Buildings.46:86-91. DOI: 10.1016/j.enbuild.2007.03.007.
[19] L. Pérez-Lombard, J. Ortiz, C. Pout. (2008). A review on buildings energy consumption information. Energy and Buildings.40(3):394-398. DOI: 10.1016/j.enbuild.2007.03.007.
[20] A. Gallo, B. T. Molina, M. Prodanovic, J. G. Aguilar. et al.(2014). Analysis of net zero-energy building in Spain. Integration of PV, solar domestic hot water and air-conditioning systems. Energy Procedia.48:828-836. DOI: 10.1016/j.enbuild.2007.03.007.
[21] Y. F. Wang, R. H. E. Hassanien, M. Li, G. X. Xu. et al.(2016). An experimental study of building thermal environment in building integrated photovoltaic (BIPV) installation. Bulgarian Chemical Communications.48:158-164. DOI: 10.1016/j.enbuild.2007.03.007.
[22] L. Aelenei, R. Pereira, A. Ferreira, H. Gonçalves. et al.(2014). Building integrated photovoltaic system with integral thermal storage: a case study. Energy Procedia.58:172-178. DOI: 10.1016/j.enbuild.2007.03.007.
[23] L. Y. Seng, G. Lalchand, G. M. Sow Lin. (2008). Economical, environmental and technical analysis of building integrated photovoltaic systems in Malaysia. Energy Policy.36(6):2130-2142. DOI: 10.1016/j.enbuild.2007.03.007.
[24] W. Wang, Y. Liu, X. Wu, Y. Xu. et al.(2016). Environmental assessments and economic performance of BAPV and BIPV systems in Shanghai. Energy and Buildings.130:98-106. DOI: 10.1016/j.enbuild.2007.03.007.
[25] N. Aste, C. Del Pero, F. Leonforte. (2016). The first Italian BIPV project: case study and long-term performance analysis. Solar Energy.134:340-352. DOI: 10.1016/j.enbuild.2007.03.007.
[26] S. Wittkopf, S. Valliappan, L. Liu, K. S. Ang. et al.(2012). Analytical performance monitoring of a 142.5kW grid-connected rooftop BIPV system in Singapore. Renewable Energy.47:9-20. DOI: 10.1016/j.enbuild.2007.03.007.
[27] Y. Sun, R. Wang, L. Xiao, J. Liu. et al.(2011). Economical and environmental analysis of grid-connected photovoltaic system in China. China Population, Resources and Environment.21:88-94. DOI: 10.1016/j.enbuild.2007.03.007.
[28] M. J. (Mariska) de Wild-Scholten. (2013). Energy payback time and carbon footprint of commercial photovoltaic systems. Solar Energy Materials & Solar Cells.119:296-305. DOI: 10.1016/j.enbuild.2007.03.007.
[29] Y. He, J. Zhang, Q. Wang, J. Xie. et al.(2013). Environmental impact assessment on multicrystalline wafer production based on life cycle assessment method. Sichuan Environment.32:83-90. DOI: 10.1016/j.enbuild.2007.03.007.
[30] J. Peng, L. Lu, H. Yang. (2013). Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems. Renewable and Sustainable Energy Reviews.19:255-274. DOI: 10.1016/j.enbuild.2007.03.007.
[31] M. J. Ritzen, Z. A. E. P. Vroon, R. Rovers, C. P. W. Geurts. et al.(2017). Comparative performance assessment of a non-ventilated and ventilated BIPV rooftop configurations in the Netherlands. Solar Energy.146:389-400. DOI: 10.1016/j.enbuild.2007.03.007.
[32] R. Eke, A. Senturk. (2013). Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations. Applied Energy.109:154-162. DOI: 10.1016/j.enbuild.2007.03.007.
[33] M. Kumar, A. Kumar. (2017). Performance assessment and degradation analysis of solar photovoltaic technologies: a review. Renewable and Sustainable Energy Reviews.78:554-587. DOI: 10.1016/j.enbuild.2007.03.007.
[34] Q. Zhu, L. Si, T. Jiang. (2012). Economical and environmental analysis of building photovoltaic systems with different installation styles. Acta Energiae Solaris Sinica.33:24-29. DOI: 10.1016/j.enbuild.2007.03.007.
[35] X. Kong, S. Lu, P. Gao, N. Zhu. et al.(2012). Research on the energy performance and indoor environment quality of typical public buildings in the tropical areas of China. Energy and Buildings.48:155-167. DOI: 10.1016/j.enbuild.2007.03.007.
[36] S. Kadoshin, T. Nishiyama, T. Ito. (2000). The trend in current and near future energy consumption from a statistical perspective. Applied Energy.67(4):407-417. DOI: 10.1016/j.enbuild.2007.03.007.
[37] H. Radhi. (2010). Energy analysis of façade-integrated photovoltaic systems applied to UAE commercial buildings. Solar Energy.84(12):2009-2021. DOI: 10.1016/j.enbuild.2007.03.007.
[38] F. Cucchiella, I. D’Adamo. (2012). Estimation of the energetic and environmental impacts of a roof-mounted building-integrated photovoltaic systems. Renewable and Sustainable Energy Reviews.16(7):5245-5259. DOI: 10.1016/j.enbuild.2007.03.007.
[39] G. Evola, G. Margani. (2016). Renovation of apartment blocks with BIPV: energy and economic evaluation in temperate climate. Energy and Buildings.130:794-810. DOI: 10.1016/j.enbuild.2007.03.007.
[40] Y. Jia, J. Wang, Z. Han, Y. Pang. et al.(2016). Analysis on environmental load of wind, PV and coal-fired power generation based on life cycle assessment. Journal of Chinese Society of Power Engineering.36:1000-1009. DOI: 10.1016/j.enbuild.2007.03.007.
[41] B. Quesada, C. Sánchez, J. Cañada, R. Royo. et al.(2011). Experimental results and simulation with TRNSYS of a 7.2 kWp grid-connected photovoltaic system. Applied Energy.88(5):1772-1783. DOI: 10.1016/j.enbuild.2007.03.007.
文献评价指标
浏览 72次
下载全文 25次
评分次数 0次
用户评分 0.0分
分享 15次