首页 » 文章 » 文章详细信息
Journal of Toxicology Volume 2018 ,2018-02-26
Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna
Research Article
Yuedan Liu 1 Chunlei Xia 2 Zhongya Fan 1 Renren Wu 1 Xianglin Chen 1 Zuoyi Liu 1
Show affiliations
DOI:10.1155/2018/2637209
Received 2017-09-28, accepted for publication 2018-01-24, Published 2018-01-24
PDF
摘要

Movement behaviors of an indicator species, Daphnia magna, in response to contaminants have been implemented to monitor environmental disturbances. Complexity in movement tracks of Daphnia magna was characterized by use of fractal dimension and self-organizing map. The individual movement tracks of D. magna were continuously recorded for 24 hours before and after treatments with toluene at the concentration of 10 mg/L, respectively. The general complexity in movement tracks (10 minutes) was characterized by fractal dimension. Results showed that average fractal dimension of movement tracks was decreased from 1.62 to 1.22 after treatments. The instantaneous movement parameters of movement segments in 5 s were input into the self-organizing map to investigate the swimming pattern changes under stresses of toluene. Abnormal behaviors of D. magna are more frequently observed after treatments than before treatments. Computational methods in ecological informatics could be utilized to obtain the useful information in behavioral data of D. magna and would be further applied as an in situ monitoring tool in water environment.

授权许可

Copyright © 2018 Yuedan Liu et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Behavior observation system for Daphnia magna.

Movement tracks of Daphnia magna treated with toluene at 10 mg/L. (a) Before treatment and (b) after treatment. Colors on tracks indicate movement segments in 10 s time interval.

Movement tracks of Daphnia magna treated with toluene at 10 mg/L. (a) Before treatment and (b) after treatment. Colors on tracks indicate movement segments in 10 s time interval.

Fractal dimension of movement tracks (10 minutes) before and after treatments of observed individuals. ∗ indicates significant difference, p < 0.01 .

The map trained by using the SOM for pattering movement segments of D. magna in 5 s. (a) Six clusters classified by the SOM (“C” represents movement segments before treatments, while “T” stands for movement segments after treatments). (b) Profile of the parameters matching the clusters based on the trained SOM. The values in the vertical bar in the top row indicate normalized parameters. (c) Dendrogram according to Ward’s linkage method.

The map trained by using the SOM for pattering movement segments of D. magna in 5 s. (a) Six clusters classified by the SOM (“C” represents movement segments before treatments, while “T” stands for movement segments after treatments). (b) Profile of the parameters matching the clusters based on the trained SOM. The values in the vertical bar in the top row indicate normalized parameters. (c) Dendrogram according to Ward’s linkage method.

The map trained by using the SOM for pattering movement segments of D. magna in 5 s. (a) Six clusters classified by the SOM (“C” represents movement segments before treatments, while “T” stands for movement segments after treatments). (b) Profile of the parameters matching the clusters based on the trained SOM. The values in the vertical bar in the top row indicate normalized parameters. (c) Dendrogram according to Ward’s linkage method.

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Diagrammatic sketch of movement patterns in 5 s segments based on the trained SOM (a) line (P1); (b) loop (P2); (c) cross (P3); (d) shaking (P4); (e) swirl (P5); and (f) stay (P6).

Percentage of movement patterns before and after treatments with toluene at 10 mg/L. ∗ indicates significant difference, p < 0.01 .

通讯作者

1. Chunlei Xia.Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China, cas.cn.c.xia2009@gmail.com
2. Zhongya Fan.The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, MEP, Guangzhou 510655, China, scies.org.fanzhongya@scies.org

推荐引用方式

Yuedan Liu,Chunlei Xia,Zhongya Fan,Renren Wu,Xianglin Chen,Zuoyi Liu. Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna. Journal of Toxicology ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] C. W. Ji, S. H. Lee, K.-H. Choi, I.-S. Kwak. et al.(2007). Monitoring of movement behaviors of chironomid larvae after exposure to diazinon using fractal dimension and self-organizing map. International Journal of Ecodynamics.2:11-12. DOI: 10.1007/s11356-010-0367-2.
[2] T.-S. Chon, Y.-S. Park, K. Y. Park, S.-Y. Choi. et al.(2004). Implementation of computational methods to pattern recognition of movement behavior of (Blattaria: Blattellidae) treated with Ca signal inducing chemicals. Applied Entomology and Zoology.39(1):79-96. DOI: 10.1007/s11356-010-0367-2.
[3] T. Kohonen. (2001). Self-Organizing Maps. DOI: 10.1007/s11356-010-0367-2.
[4] P. D. Robinson. (2009). Behavioural toxicity of organic chemical contaminants in fish: Application to ecological risk assessments (ERAs). Canadian Journal of Fisheries and Aquatic Sciences.66(7):1179-1188. DOI: 10.1007/s11356-010-0367-2.
[5] J. Ward. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association.58:236-244. DOI: 10.1007/s11356-010-0367-2.
[6] G. Bringmann, R. Kuehn. (1982). Results of toxic action of water pollutants on Straus tested by an improved standardized procedure. Zeitschrift fur Wasser und Abwasser Forschung.15(1):1-6. DOI: 10.1007/s11356-010-0367-2.
[7] J. J. Gagnepain, C. Roques-Carmes. (1986). Fractal approach to two-dimensional and three-dimensional surface roughness. Wear.109(1–4):119-126. DOI: 10.1007/s11356-010-0367-2.
[8] B.-P. Elendt, W.-R. Bias. (1990). Trace nutrient deficiency in cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of. Water Research.24(9):1157-1167. DOI: 10.1007/s11356-010-0367-2.
[9] T. L. Beitinger. (1990). Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research.16(4):495-528. DOI: 10.1007/s11356-010-0367-2.
[10] H.-J. Eom, H. Kim, B.-M. Kim, T.-S. Chon. et al.(2014). Integrative assessment of benzene exposure to using computational behavior and toxicogenomic analyses. Environmental Science & Technology.48(14):8143-8151. DOI: 10.1007/s11356-010-0367-2.
[11] T. V. Nguyen, Y. Liu, I.-H. Jung, T.-S. Chon. et al.(2011). Unraveling Markov processes in movement patterns of indicator species in response to chemical stressors. Modern Physics Letters B.25(12-13):1143-1149. DOI: 10.1007/s11356-010-0367-2.
[12] D. Wishart. (1969). An algorithm for hierarchical classifications. Biometrics.25(1):165-170. DOI: 10.1007/s11356-010-0367-2.
[13] Y. Fan, Q. Zhou, Y. Wang, S. Zhu. et al.(2009). Toxic effects of BTEX in water on and and safety assessment of the aquatic environment. Acta Scientiae Circumstantiae.29(7):1485-1490. DOI: 10.1007/s11356-010-0367-2.
[14] Y. Liu, T.-S. Chon, H. Baek, Y. Do. et al.(2011). Permutation entropy applied to movement behaviors of. Modern Physics Letters B.25(12-13):1133-1142. DOI: 10.1007/s11356-010-0367-2.
[15] Y. Liu, S.-H. Lee, T.-S. Chon. (2011). Analysis of behavioral changes of zebrafish in response to formaldehyde using Self-organizing map and a hidden Markov model. Ecological Modelling.222(14):2191-2201. DOI: 10.1007/s11356-010-0367-2.
[16] Y. Liu, R. H. Weisberg. (2005). Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. Journal of Geophysical Research: Oceans.110(6)-12. DOI: 10.1007/s11356-010-0367-2.
[17] F. Filiciotto, M. Vazzana, M. Celi, V. Maccarrone. et al.(2014). Behavioural and biochemical stress responses of after exposure to boat noise pollution in tank. Marine Pollution Bulletin.84(1-2):104-114. DOI: 10.1007/s11356-010-0367-2.
[18] H. Mobahi, S. R. Rao, A. Y. Yang, S. S. Sastry. et al.(2011). Segmentation of natural images by texture and boundary compression. International Journal of Computer Vision.95(1):86-98. DOI: 10.1007/s11356-010-0367-2.
[19] L. G. Shapiro, G. C. Stockman. (2001). Computer Vision. DOI: 10.1007/s11356-010-0367-2.
[20] D. L. Pham, C. Xu, J. L. Prince. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering.2(2000):315-337. DOI: 10.1007/s11356-010-0367-2.
[21] C.-K. Kim, I.-S. Kwak, E.-Y. Cha, T.-S. Chon. et al.(2006). Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring. Ecological Modelling.195(1-2):61-71. DOI: 10.1007/s11356-010-0367-2.
[22] E. Lari, S. Wiseman, E. Mohaddes, G. Morandi. et al.(2016). Determining the effect of oil sands process-affected water on grazing behaviour of , long-term consequences, and mechanism. Chemosphere.146:362-370. DOI: 10.1007/s11356-010-0367-2.
[23] T.-S. Chon. (2011). Self-organizing maps applied to ecological sciences. Ecological Informatics.6(1):50-61. DOI: 10.1007/s11356-010-0367-2.
[24] B. B. Mandelbrot. (1983). The Fractal Geometry of Nature. DOI: 10.1007/s11356-010-0367-2.
[25] R. Jeanson, S. Blanco, R. Fournier, J.-L. Deneubourg. et al.(2003). A model of animal movements in a bounded space. Journal of Theoretical Biology.225(4):443-451. DOI: 10.1007/s11356-010-0367-2.
[26] J. Vesanto, J. Himberg, E. Alhoniemi, J. Parhankangas. et al.(2000). SOM Toolbox for Matlab 5. DOI: 10.1007/s11356-010-0367-2.
[27] M. Piccardi. Background subtraction techniques: a review. :3099-3104. DOI: 10.1007/s11356-010-0367-2.
[28] A. D. Lemly, R. J. F. Smith. (1986). A behavioral assay for assessing effects of pollutants on fish chemoreception. Ecotoxicology and Environmental Safety.11(2):210-218. DOI: 10.1007/s11356-010-0367-2.
[29] J. Martins, M. L. Soares, M. L. Saker, L. OlivaTeles. et al.(2007). Phototactic behavior in Straus as an indicator of toxicants in the aquatic environment. Ecotoxicology and Environmental Safety.67(3):417-422. DOI: 10.1007/s11356-010-0367-2.
[30] H.-J. Eom, Y. Liu, G.-S. Kwak, M. Heo. et al.(2017). Inhalation toxicity of indoor air pollutants in using integrated transcriptomics and computational behavior analyses. Scientific Reports.7-14. DOI: 10.1007/s11356-010-0367-2.
[31] T. Uehara, B. Li, B.-M. Kim, S.-S. Yoon. et al.(2015). Inferring conflicting behavior of zebrafish in response to food and predator based on a self-organizing map (SOM) and intermittency test. Ecological Informatics.29(2):119-129. DOI: 10.1007/s11356-010-0367-2.
[32] Y. Liu, T.-S. Chon, S.-H. Lee. (2010). Hidden Markov model and self-organizing map applied to exploration of movement behaviors of (Cladocera: Daphniidae). Journal of the Korean Physical Society.56(31):1003-1010. DOI: 10.1007/s11356-010-0367-2.
[33] R. M. A. Hayman, J. G. Donnett, K. J. Jeffery. (2008). The fuzzy-boundary arena—a method for constraining an animal’s range in spatial experiments without using walls. Journal of Neuroscience Methods.167(2):184-190. DOI: 10.1007/s11356-010-0367-2.
[34] H. Dutta, J. Marcelino, C. Richmonds. (1992). Brain acetylcholinesterase activity and optomotor behavior in bluegills, lepomis macrochirus exposed to different concentrations of diazinon. Archives Internationales de Physiologie, de Biochimie et de Biophysique.100(5):331-334. DOI: 10.1007/s11356-010-0367-2.
[35] H. Lakany. (2008). Extracting a diagnostic gait signature. Pattern Recognition.41(5):1627-1637. DOI: 10.1007/s11356-010-0367-2.
[36] A. Gerhardt. (1999). Recent trends in automated biomonitoring for water quality control. Biomonitoring of Polluted Water—Reviews on Actual Topics.9:95. DOI: 10.1007/s11356-010-0367-2.
[37] J. Hellou. (2011). Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environmental Science and Pollution Research.18(1):1-11. DOI: 10.1007/s11356-010-0367-2.
[38] (2006). SPSS 15.0 Command Syntax Reference. DOI: 10.1007/s11356-010-0367-2.
[39] G. A. LeBlanc. (1980). Acute toxicity of priority pollutants to water flea. Bulletin of Environmental Contamination and Toxicology.24(1):684-691. DOI: 10.1007/s11356-010-0367-2.
[40] L. Wang, Z. Ren, H. Kim, C. Xia. et al.(2015). Characterizing response behavior of medaka under chemical stress based on self-organizing map and filtering by integration. Ecological Informatics.29, part 2:107-118. DOI: 10.1007/s11356-010-0367-2.
[41] M.-J. Bae, T.-S. Chon, Y.-S. Park. (2015). Modeling behavior control of golden apple snails at different temperatures. Ecological Modelling.306:86-94. DOI: 10.1007/s11356-010-0367-2.
文献评价指标
浏览 95次
下载全文 10次
评分次数 0次
用户评分 0.0分
分享 0次