首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2018 ,2018-02-14
Speciation, Fate and Transport, and Ecological Risks of Cu, Pb, and Zn in Tailings from Huogeqi Copper Mine, Inner Mongolia, China
Research Article
Liwei Chen 1 Jun Wu 2 Jian Lu 3 Chulin Xia 4 Michael A. Urynowicz 5 Zaixing Huang 5 Li Gao 6 Mingying Ma 1
Show affiliations
DOI:10.1155/2018/2340542
Received 2017-12-19, accepted for publication 2018-01-18, Published 2018-01-18
PDF
摘要

Tailings collected from the tailing reservoir at Huogeqi Copper Mine, located in Inner Mongolia, China, were used in a leachate study to evaluate the acid potential, neutralization potential, and possibility for producing acid mine drainage (AMD) from the site. The speciation of Cu, Pb, and Zn contained in the tailings was also determined during the leachate study to further access the potential migration abilities of these metals. The results showed that the tailings did not produce significant AMD as the pH of the leachate ranged from 7 to 9 and decreased with time. The Cu, Pb, and Zn concentrations were high, ranging from 439.1 to 4527 mg/kg in the tailings and from 0.162 to 7.964 mg/L in the leachate, respectively. Concentrations of metals in the leachate and tailings were positively correlated. Over 60% of the Cu in the tailing samples existed in an oxidizable form. Most of the Pb also existed in its oxidized form, as did the silicate and Zn. Metals usually have higher mobility in their exchangeable and oxidizable forms and as such represent a higher potential risk to the environment. Results of risk assessment code also revealed that metals in tailings exerted medium to high risks to the environment.

授权许可

Copyright © 2018 Liwei Chen et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

pH variations of tailing leachate.

Variation of Cu concentrations in leachate of different tailings.

Variation of Pb concentrations in leachate of different tailings.

Variation of Zn concentrations in leachate of different tailings.

Speciation of heavy metals in different tailings.

Risk assessment code of heavy metals in different tailings.

通讯作者

Jun Wu.Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, China, cas.cn.junwu@isl.ac.cn

推荐引用方式

Liwei Chen,Jun Wu,Jian Lu,Chulin Xia,Michael A. Urynowicz,Zaixing Huang,Li Gao,Mingying Ma. Speciation, Fate and Transport, and Ecological Risks of Cu, Pb, and Zn in Tailings from Huogeqi Copper Mine, Inner Mongolia, China. Journal of Chemistry ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
23

是否收藏?

参考文献
[1] F. M. Tack, O. W. J. J. Callewaert, M. G. Verloo. (1996). Metal solubility as a function of pH in a contaminated, dredged sediment affected by oxidation. Environmental Pollution.91(2):199-208. DOI: 10.1016/j.apgeochem.2015.11.002.
[2] U. Förstner, G. T. W. Wittmann. (1979). Metal Pollution in the Aquatic Environment. DOI: 10.1016/j.apgeochem.2015.11.002.
[3] I. P. G. Hutchison, R. D. Ellison. (1992). Mine Waste Management. DOI: 10.1016/j.apgeochem.2015.11.002.
[4] T. Assawincharoenkij, C. Hauzenberger, K. Ettinger, C. Sutthirat. et al.(2017). Mineralogical and geochemical characterization of waste rocks from a gold mine in northeastern Thailand: application for environmental impact protection. Environmental Science and Pollution Research:1-13. DOI: 10.1016/j.apgeochem.2015.11.002.
[5] F. Páez-Osuna, H. Bojórquez-Leyva, M. Bergés-Tiznado, O. A. Rubio-Hernández. et al.(2015). Heavy Metals in Waters and Suspended Sediments Affected by a Mine Tailing Spill in the Upper San Lorenzo River, Northwestern México. Bulletin of Environmental Contamination and Toxicology.94(5, article no. 1473):583-588. DOI: 10.1016/j.apgeochem.2015.11.002.
[6] R. W. Lawrence, M. Scheske. (1997). A method to calculate the neutralization potential of mining wastes. Environmental Geology.32(2):100-106. DOI: 10.1016/j.apgeochem.2015.11.002.
[7] A. Tessier, P. G. C. Campbell, M. Blsson. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry.51(7):844-851. DOI: 10.1016/j.apgeochem.2015.11.002.
[8] Z. Feketeová, V. Hulejová Sládkovičová, B. Mangová, I. Šimkovic. et al.(2015). Biological activity of the metal-rich post-flotation tailings at an abandoned mine tailings pond (four decades after experimental afforestation). Environmental Science and Pollution Research.22(16):12174-12181. DOI: 10.1016/j.apgeochem.2015.11.002.
[9] M. Z. Hossen, M. M. Islam, M. S. Hossain. (2017). Heavy Metal Contents in Sediments of an Urban Industrialized Area-A Case Study of Tongi Canal, Bangladesh. Asian Journal of Water, Environment and Pollution.14(1):59-68. DOI: 10.1016/j.apgeochem.2015.11.002.
[10] M. A. Ashraf, M. J. Maah, I. Yusoff. (2011). Heavy metals accumulation in plants growing in ex tin mining catchment. International Journal of Environmental Science & Technology.8(2):401-416. DOI: 10.1016/j.apgeochem.2015.11.002.
[11] A. J. Romero-Baena, I. González, E. Galán. (2017). Soil pollution by mining activities in Andalusia (South Spain)—the role of Mineralogy and Geochemistry in three case studies. Journal of Soils and Sediments:1-17. DOI: 10.1016/j.apgeochem.2015.11.002.
[12] Z. Xiao, X. Yuan, L. Leng, L. Jiang. et al.(2016). Risk assessment of heavy metals from combustion of pelletized municipal sewage sludge. Environmental Science and Pollution Research.23(4):3934-3942. DOI: 10.1016/j.apgeochem.2015.11.002.
[13] H. Herrmann, H. Bucksch. (2014). Dictionary Geotechnical Engineering/Wörterbuch GeoTechnik. DOI: 10.1016/j.apgeochem.2015.11.002.
[14] J.-Y. Kim, K.-W. Kim, J. S. Ahn, I. Ko. et al.(2005). Investigation and risk assessment modeling of As and other heavy metals contamination around five abandoned metal mines in Korea. Environmental Geochemistry and Health.27(2):193-203. DOI: 10.1016/j.apgeochem.2015.11.002.
[15] G. Guo, T. Yuan, W. Wang, D. Li. et al.(2011). Bioavailability, mobility, and toxicity of Cu in soils around the Dexing Cu mine in China. Environmental Geochemistry and Health.33(2):217-224. DOI: 10.1016/j.apgeochem.2015.11.002.
[16] A. A. Sobek, W. A. Schuller, J. R. Freeman. (1978). Field and Laboratory Methods Applicable to Overburdens and Mine Soil. DOI: 10.1016/j.apgeochem.2015.11.002.
[17] D. W. Blowes, E. J. Reardon, J. L. Jambor, J. A. Cherry. et al.(1991). The formation and potential importance of cemented layers in inactive sulfide mine tailings. Geochimica et Cosmochimica Acta.55(4):965-978. DOI: 10.1016/j.apgeochem.2015.11.002.
[18] R. B. Herbert. (1996). Metal retention by iron oxide precipitation from acidic ground water in Dalarna, Sweden. Applied Geochemistry.11(1-2):229-235. DOI: 10.1016/j.apgeochem.2015.11.002.
[19] V. A. Mesquita, C. F. Silva, E. V. Soares. (2016). Toxicity Induced by a Metal Mixture (Cd, Pb and Zn) in the Yeast Pichia kudriavzevii: The Role of Oxidative Stress. Current Microbiology.72(5):545-550. DOI: 10.1016/j.apgeochem.2015.11.002.
[20] C. Nikolaidis, I. Zafiriadis, V. Mathioudakis, T. Constantinidis. et al.(2010). Heavy metal pollution associated with an abandoned lead-zinc mine in the Kirki Region, NE Greece. Bulletin of Environmental Contamination and Toxicology.85(3):307-312. DOI: 10.1016/j.apgeochem.2015.11.002.
[21] K. G. Stollenwerk. (1994). Geochemical interactions between constituents in acidic groundwater and alluvium in an aquifer near Globe, Arizona. Applied Geochemistry.9(4):353-369. DOI: 10.1016/j.apgeochem.2015.11.002.
[22] O. Pourret, B. Lange, J. Bonhoure, G. Colinet. et al.(2016). Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Applied Geochemistry.64:43-55. DOI: 10.1016/j.apgeochem.2015.11.002.
[23] E. S. Sağlam, M. Akçay. (2016). Chemical and mineralogical changes of waste and tailings from the Murgul Cu deposit (Artvin, NE Turkey): implications for occurrence of acid mine drainage. Environmental Science and Pollution Research.23(7):6584-6607. DOI: 10.1016/j.apgeochem.2015.11.002.
[24] A. Courtin-Nomade, T. Waltzing, C. Evrard, M. Soubrand. et al.(2016). Arsenic and lead mobility: From tailing materials to the aqueous compartment. Applied Geochemistry.64:10-21. DOI: 10.1016/j.apgeochem.2015.11.002.
[25] L. Lei, B. Mo, W. Fu, J. Mo. et al.(2014). Occurrence state of heavy metals in the carbonate-rich sulfide tailings in Bali inactive impoundment, Dachang Tin-polymetallic Mine (Gaungxi, China). Earth and Environment.42(5):604-610. DOI: 10.1016/j.apgeochem.2015.11.002.
[26] M. Wang, K. Hu, D. Zhang, J. Lai. et al.(2017). Speciation and Spatial Distribution of Heavy Metals (cu and Zn) in Wetland Soils of Poyang Lake (China) in Wet Seasons. Wetlands.11:1-10. DOI: 10.1016/j.apgeochem.2015.11.002.
[27] A. A. Bogush, E. V. Lazareva. (2011). Behavior of heavy metals in sulfide mine tailings and bottom sediment (Salair, Kemerovo region, Russia). Environmental Earth Sciences.64(5):1293-1302. DOI: 10.1016/j.apgeochem.2015.11.002.
[28] V. Misra, A. Tiwari, B. Shukla, C. S. Seth. et al.(2009). Effects of soil amendments on the bioavailability of heavy metals from zinc mine tailings. Environmental Monitoring and Assessment.155(1-4):467-475. DOI: 10.1016/j.apgeochem.2015.11.002.
[29] C. Candeias, P. F. Ávila, E. F. da Silva, A. Ferreira. et al.(2015). Water–Rock Interaction and Geochemical Processes in Surface Waters Influenced by Tailings Impoundments: Impact and Threats to the Ecosystems and Human Health in Rural Communities (Panasqueira Mine, Central Portugal). Water, Air, & Soil Pollution.226(2):23. DOI: 10.1016/j.apgeochem.2015.11.002.
[30] L. Fanfani, P. Zuddas, A. Chessa. (1997). Heavy metals speciation analysis as a tool for studying mine tailings weathering. Journal of Geochemical Exploration.58(2-3):241-248. DOI: 10.1016/j.apgeochem.2015.11.002.
[31] L. Wang, Y. Liu, A. Lu, S. Wang. et al.(2013). The modes of occurrence of Ni and Cu in tailings of Jinchuan nickel mine. Acta Petrologica et Mineralogica.32(6):873-881. DOI: 10.1016/j.apgeochem.2015.11.002.
[32] A. M. Gbadebo, Y. A. Ekwue. (2014). Heavy metal contamination in tailings and rocksamples from an abandoned goldminein southwestern Nigeria. Environmental Modeling & Assessment.186(1):165-174. DOI: 10.1016/j.apgeochem.2015.11.002.
[33] P.-K. Lee, M.-J. Kang, H. Y. Jo, S.-H. Choi. et al.(2012). Sequential extraction and leaching characteristics of heavy metals in abandoned tungsten mine tailings sediments. Environmental Earth Sciences.66(7):1909-1923. DOI: 10.1016/j.apgeochem.2015.11.002.
[34] C. A. J. Appelo, D. Postma. (1996). Geochemistry Groundwater and Pollution. DOI: 10.1016/j.apgeochem.2015.11.002.
文献评价指标
浏览 438次
下载全文 45次
评分次数 0次
用户评分 0.0分
分享 23次