首页 » 文章 » 文章详细信息
Journal of Chemistry Volume 2018 ,2018-01-21
Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment
Review Article
M. K. Daud 1 , 2 Hina Rizvi 3 Muhammad Farhan Akram 3 Shafaqat Ali 3 , 4 Muhammad Rizwan 3 Muhammad Nafees 5 Zhu Shui Jin 1
Show affiliations
DOI:10.1155/2018/1596319
Received 2017-07-10, accepted for publication 2017-12-14, Published 2017-12-14
PDF
摘要

The upflow anaerobic sludge blanket (UASB) reactor has been recognized as an important wastewater treatment technology among anaerobic treatment methods. The objective of this study was to perform literature review on the treatment of domestic sewage using the UASB reactor as the core component and identifying future areas of research. The merits of anaerobic and aerobic bioreactors are highlighted and other sewage treatment technologies are compared with UASB on the basis of performance, resource recovery potential, and cost. The comparison supports UASB as a suitable option on the basis of performance, green energy generation, minimal space requirement, and low capital, operation, and maintenance costs. The main process parameters such as temperature, hydraulic retention time (HRT), organic loading rate (OLR), pH, granulation, and mixing and their effects on the performance of UASB reactor and hydrogen production are presented for achieving optimal results. Feasible posttreatment steps are also identified for effective discharge and/or reuse of treated water.

授权许可

Copyright © 2018 M. K. Daud et al. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Hina Rizvi.Department of Environmental Sciences and Engineering, Government College University, Allama Iqbal Road, Faisalabad 38000, Pakistan, gcuf.edu.pk.hinarizvi1@gmail.com
2. Zhu Shui Jin.Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, China, zju.edu.cn.shjzhu@zju.edu.cn

推荐引用方式

M. K. Daud,Hina Rizvi,Muhammad Farhan Akram,Shafaqat Ali,Muhammad Rizwan,Muhammad Nafees,Zhu Shui Jin. Review of Upflow Anaerobic Sludge Blanket Reactor Technology: Effect of Different Parameters and Developments for Domestic Wastewater Treatment. Journal of Chemistry ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
5

是否收藏?

参考文献
[1] Q. H. Banihani, J. A. Field. (2013). Treatment of high-strength synthetic sewage in a laboratory-scale upflow anaerobic sludge bed (UASB) with aerobic activated sludge (AS) post-treatment. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering.48(3):338-347. DOI: 10.1016/j.biortech.2005.05.015.
[2] S. V. Kalyuzhnyi, V. I. Sklyar, M. A. Davlyatshina, S. N. Parshina. et al.(1996). Organic removal and microbiological features of UASB-reactor under various organic loading rates. Bioresource Technology.55(1):47-54. DOI: 10.1016/j.biortech.2005.05.015.
[3] A. A. Khan, R. Z. Gaur, V. K. Tyagi, A. Khursheed. et al.(2011). Sustainable options of post treatment of UASB effluent treating sewage: a review. Resources, Conservation & Recycling.55(12):1232-1251. DOI: 10.1016/j.biortech.2005.05.015.
[4] P. F. F. Cavalcanti. (2003). Integrated Application of The UASB Reactor And Ponds for Domestic Sewage Treatment in Tropical Regions. DOI: 10.1016/j.biortech.2005.05.015.
[5] G. Zeeman, W. Sanders, G. Lettinga. (2000). Feasibility of the on-site treatment of sewage and swill in large buildings. Water Science and Technology.41(1):9-16. DOI: 10.1016/j.biortech.2005.05.015.
[6] A. T. Nair, M. M. Ahammed. (2015). The reuse of water treatment sludge as a coagulant for post-treatment of UASB reactor treating urban wastewater. Journal of Cleaner Production.96, article 3884:272-281. DOI: 10.1016/j.biortech.2005.05.015.
[7] S. K. Khanal. (2011). Anaerobic Biotechnology for Bioenergy Production: Principles and Applications. DOI: 10.1016/j.biortech.2005.05.015.
[8] N. Azbar, F. T. Dokgöz, T. Keskin, R. Eltem. et al.(2009). Comparative evaluation of bio-hydrogen production from cheese whey wastewater under thermophilic and mesophilic anaerobic conditions. International Journal of Green Energy.6(2):192-200. DOI: 10.1016/j.biortech.2005.05.015.
[9] I. Bodík, B. Herdová, M. Drtil. (2000). Anaerobic treatment of the municipal wastewater under psychrophilic conditions. Bioprocess Engineering.22(5):385-390. DOI: 10.1016/j.biortech.2005.05.015.
[10] E. Metcalf, I. Eddy. (2003). Wastewater Engineering Treatment and Reuse. DOI: 10.1016/j.biortech.2005.05.015.
[11] G. Lettinga, S. Rebac, G. Zeeman. (2001). Challenge of psychrophilic anaerobic wastewater treatment. Trends in Biotechnology.19(9):363-370. DOI: 10.1016/j.biortech.2005.05.015.
[12] N. Mahmoud. (2002). Anaerobic pre treatment of sewage under low temperature (15°C) conditions in an integrated UASB-Digester system. DOI: 10.1016/j.biortech.2005.05.015.
[13] K. S. Singh, H. Harada, T. Viraraghavan. (1996). Low-strength wastewater treatment by a UASB reactor. Bioresource Technology.55(3):187-194. DOI: 10.1016/j.biortech.2005.05.015.
[14] P. S. James, S. Kamaraj. (2002). Immobilized cell anaerobic bioreactors for energy production from agro-industrial waste waters-An introduction. Bioenergy News.6(3, article 10). DOI: 10.1016/j.biortech.2005.05.015.
[15] R. Shahperi, M. F. M. Din, S. Chelliapan, M. A. M. Aris. et al.(2016). Optimization of methane production process from synthetic glucose feed in a multi-stage anaerobic bioreactor. Desalination and Water Treatment.57(60):29168-29177. DOI: 10.1016/j.biortech.2005.05.015.
[16] N. Sato, T. Okubo, T. Onodera, A. Ohashi. et al.(2006). Prospects for a self-sustainable sewage treatment system: a case study on full-scale UASB system in India's Yamuna River Basin. Journal of Environmental Management.80(3):198-207. DOI: 10.1016/j.biortech.2005.05.015.
[17] B. Wolmarans, G. H. De Villiers. (2002). Start-up of a UASB effluent treatment plant on distillery wastewater. Water SA.28(1):63-68. DOI: 10.1016/j.biortech.2005.05.015.
[18] H. H. P. Fang. (2000). Microbial distribution in UASB granules and its resulting effects. Water Science and Technology.42(12):201-208. DOI: 10.1016/j.biortech.2005.05.015.
[19] Y. J. Chan, M. F. Chong, C. L. Law, D. G. Hassell. et al.(2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal.155(1-2):1-18. DOI: 10.1016/j.biortech.2005.05.015.
[20] S. C. Oliveira, M. Von Sperling. (2009). Performance evaluation of UASB reactor systems with and without post-treatment. Water Science and Technology.59(7):1299-1306. DOI: 10.1016/j.biortech.2005.05.015.
[21] J. B. Van Lier, G. Lettinga. (1999). Appropriate technologies for effective management of industrial and domestic waste waters: the decentralised approach. Water Science and Technology.40(7):171-183. DOI: 10.1016/j.biortech.2005.05.015.
[22] M. Halalsheh, Z. Sawajneh, M. Zu'bi, G. Zeeman. et al.(2005). Treatment of strong domestic sewage in a 96 m 3 UASB reactor operated at ambient temperatures: two-stage versus single-stage reactor. Bioresource Technology.96(5):577-585. DOI: 10.1016/j.biortech.2005.05.015.
[23] Y. Kalogo, W. Verstraete. (1999). Development of anaerobic sludge bed (ASB) reactor technologies for domestic wastewater treatment: motives and perspectives. World Journal of Microbiology and Biotechnology.15(5):523-534. DOI: 10.1016/j.biortech.2005.05.015.
[24] L. Singh, Z. A. Wahid, M. F. Siddiqui, A. Ahmad. et al.(2013). Application of immobilized upflow anaerobic sludge blanket reactor using Clostridium LS2 for enhanced biohydrogen production and treatment efficiency of palm oil mill effluent. International Journal of Hydrogen Energy.38(5):2221-2229. DOI: 10.1016/j.biortech.2005.05.015.
[25] K. Yetilmezsoy, S. Sakar. (2008). Development of empirical models for performance evaluation of UASB reactors treating poultry manure wastewater under different operational conditions. Journal of Hazardous Materials.153(1-2):532-543. DOI: 10.1016/j.biortech.2005.05.015.
[26] A. Farghaly, A. Tawfik. (2017). Simultaneous hydrogen and methane production through multi-phase anaerobic digestion of paperboard mill wastewater under different operating conditions. Applied Biochemistry and Biotechnology.181(1):142-156. DOI: 10.1016/j.biortech.2005.05.015.
[27] R. F. Hickey, W.-M. Wu, M. C. Veiga, R. Jones. et al.(1991). Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Science and Technology.24(8):207-255. DOI: 10.1016/j.biortech.2005.05.015.
[28] J. B. Van Lier, A. Vashi, J. Van Der Lubbe, B. Heffernan. et al.(2010). Anaerobic sewage treatment using UASB reactors: engineering and operational aspects. Environmental anaerobic technology; applications and new developments.59. DOI: 10.1016/j.biortech.2005.05.015.
[29] L. Seghezzo. (2004). Anaerobic Treatment of Domestic Wastewater in Subtropical Regions. DOI: 10.1016/j.biortech.2005.05.015.
[30] A. Gnanadipathy, C. Polprasert. (1993). Treatment of a domestic wastewater with UASB reactors. Water Science and Technology.27(1):195-203. DOI: 10.1016/j.biortech.2005.05.015.
[31] H. Rizvi, S. Ali, A. Yasar, M. Ali. et al.(2017). Applicability of upflow anaerobic sludge blanket (UASB) reactor for typical sewage of a small community: its biomass reactivation after shutdown. International Journal of Environmental Science and Technology:1-12. DOI: 10.1016/j.biortech.2005.05.015.
[32] A. C. van Haandel. (2005). Integrated energy production and reduction of the environmental impact at alcohol distillery plants. Water Science and Technology.52(1-2):49-57. DOI: 10.1016/j.biortech.2005.05.015.
[33] M. Hernández, M. Rodríguez. (2013). Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions. Journal of Renewable Energy.53:187-192. DOI: 10.1016/j.biortech.2005.05.015.
[34] N. Sato, T. Okubo, T. Onodera, L. K. Agrawal. et al.(2007). Economic evaluation of sewage treatment processes in India. Journal of Environmental Management.84(4):447-460. DOI: 10.1016/j.biortech.2005.05.015.
[35] B. C. Crone, J. L. Garland, G. A. Sorial, L. M. Vane. et al.(2016). Significance of dissolved methane in effluents of anaerobically treated low strength wastewater and potential for recovery as an energy product: a review. Water Research.104:520-531. DOI: 10.1016/j.biortech.2005.05.015.
[36] P. Kongjan, S. O-Thong, I. Angelidaki. (2013). Hydrogen and methane production from desugared molasses using a two-stage thermophilic anaerobic process. Engineering in Life Sciences.13(2):118-125. DOI: 10.1016/j.biortech.2005.05.015.
[37] J. Keller, K. Hartley. (2003). Greenhouse gas production in wastewater treatment: process selection is the major factor. Water Science and Technology.47(12):43-48. DOI: 10.1016/j.biortech.2005.05.015.
[38] S. M. M. Vieira, A. D. Garcia. (1992). Sewage treatment by UASB-reactor. Operation results and recommendations for design and utilization. Water Science and Technology.25(7):143-157. DOI: 10.1016/j.biortech.2005.05.015.
[39] F. Y. Cakir, M. K. Stenstrom. (2005). Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Research.39(17):4197-4203. DOI: 10.1016/j.biortech.2005.05.015.
[40] R. Rajakumar, T. Meenambal, J. R. Banu, I. T. Yeom. et al.(2011). Treatment of poultry slaughterhouse wastewater in upflow anaerobic filter under low upflow velocity. International Journal of Environmental Science and Technology.8(1):149-158. DOI: 10.1016/j.biortech.2005.05.015.
[41] D. J. Batstone, J. L. A. Hernandez, J. E. Schmidt. (2005). Hydraulics of laboratory and full-scale upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering.91(3):387-391. DOI: 10.1016/j.biortech.2005.05.015.
[42] B. Zhang, L.-L. Zhang, S.-C. Zhang, H.-Z. Shi. et al.(2005). The influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environmental Technology.26(3):329-339. DOI: 10.1016/j.biortech.2005.05.015.
[43] R. C. Leitao. (2004). Robustness of UASB Reactors Treating Sewage under Tropical Conditions. DOI: 10.1016/j.biortech.2005.05.015.
[44] R. R. Liu, Q. Tian, B. Yang, J. H. Chen. et al.(2010). Hybrid anaerobic baffled reactor for treatment of desizing wastewater. International Journal of Environmental Science and Technology.7(1):111-118. DOI: 10.1016/j.biortech.2005.05.015.
[45] P. F. Greenfield, D. J. Batstone. (2005). Anaerobic digestion: Impact of future greenhouse gases mitigation policies on methane generation and usage. Water Science and Technology.52(1-2):39-47. DOI: 10.1016/j.biortech.2005.05.015.
[46] C. Casserly, L. Erijman. (2003). Molecular monitoring of microbial diversity in an UASB reactor. International Biodeterioration & Biodegradation.52(1):7-12. DOI: 10.1016/j.biortech.2005.05.015.
[47] H. Rizvi, N. Ahmad, F. Abbas, I. H. Bukhari. et al.(2015). Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arabian Journal of Chemistry.8(6):780-786. DOI: 10.1016/j.biortech.2005.05.015.
[48] J. A. Álvarez, I. Ruiz, M. Gómez, J. Presas. et al.(2006). Start-up alternatives and performance of an UASB pilot plant treating diluted municipal wastewater at low temperature. Bioresource Technology.97(14):1640-1649. DOI: 10.1016/j.biortech.2005.05.015.
[49] A. A. Khan, I. Mehrotra, A. A. Kazmi. (2015). Sludge profiling at varied organic loadings and performance evaluation of UASB reactor treating sewage. Biosystems Engineering.131:32-40. DOI: 10.1016/j.biortech.2005.05.015.
[50] M. Halalsheh. (2002). Anaerobic Pre Treatment of Strong Sewage. A Proper Solution for Jordan. DOI: 10.1016/j.biortech.2005.05.015.
[51] M. Von Sperling, C. A. De Lemos Chernicharo. (2005). Biological Wastewater Treatment in Warm Climate Regions.1. DOI: 10.1016/j.biortech.2005.05.015.
[52] S. Shastry, T. Nandy, S. R. Wate, S. N. Kaul. et al.(2010). Hydrogenated vegetable oil industry wastewater treatment using UASB reactor system with recourse to energy recovery. Water, Air, & Soil Pollution.208(1–4):323-333. DOI: 10.1016/j.biortech.2005.05.015.
[53] S. Chong, T. K. Sen, A. Kayaalp, H. M. Ang. et al.(2012). The performance enhancements of upflow anaerobic sludge blanket (UASB) reactors for domestic sludge treatment—a State-of-the-art review. Water Research.46(11):3434-3470. DOI: 10.1016/j.biortech.2005.05.015.
[54] G. Lettinga, J. B. Van Lier, J. C. L. Van Buuren, G. Zeeman. et al.(2001). Sustainable development in pollution control and the role of anaerobic treatment. Water Science and Technology.44(6):181-188. DOI: 10.1016/j.biortech.2005.05.015.
[55] J. B. Van Lier. (2008). High-rate anaerobic wastewater treatment: diversifying from end-of-the-pipe treatment to resource-oriented conversion techniques. Water Science and Technology.57(8):1137-1148. DOI: 10.1016/j.biortech.2005.05.015.
[56] V. N. Nkemka, M. Murto. (2010). Evaluation of biogas production from seaweed in batch tests and in UASB reactors combined with the removal of heavy metals. Journal of Environmental Management.91(7):1573-1579. DOI: 10.1016/j.biortech.2005.05.015.
[57] M. R. Peña, D. D. Mara, G. P. Avella. (2006). Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Research.40(3):445-452. DOI: 10.1016/j.biortech.2005.05.015.
[58] H.-H. Chou, J.-S. Huang. (2005). Role of mass transfer resistance in overall substrate removal rate in upflow anaerobic sludge bed reactors. Journal of Environmental Engineering.131(4):548-556. DOI: 10.1016/j.biortech.2005.05.015.
[59] B. D. Shoener, I. M. Bradley, R. D. Cusick, J. S. Guest. et al.(2014). Energy positive domestic wastewater treatment: the roles of anaerobic and phototrophic technologies. Environmental Sciences: Processes & Impacts.16(6):1204-1222. DOI: 10.1016/j.biortech.2005.05.015.
[60] D. J. I. Gustavsson, S. Tumlin. (2013). Carbon footprints of Scandinavian wastewater treatment plants. Water Science and Technology.68(4):887-893. DOI: 10.1016/j.biortech.2005.05.015.
[61] H. D. Monteith, H. R. Sahely, H. L. MacLean, D. M. Bagley. et al.(2003). A life-cycle approach for estimation of greenhouse gas emissions from canadian wastewater treatment. Proceedings of the Water Environment Federation.2003(11):514-527. DOI: 10.1016/j.biortech.2005.05.015.
[62] H. Rizvi. (2011). Sewage treatment by an upflow anaerobic sludge blanket reactor (UASB) under subtropical conditions [PhD Thesis]. DOI: 10.1016/j.biortech.2005.05.015.
[63] T. A. Elmitwalli, K. L. T. Oahn, G. Zeeman, G. Lettinga. et al.(2002). Treatment of domestic sewage in a two-step anaerobic filter/anaerobic hybrid system at low temperature. Water Research.36(9):2225-2232. DOI: 10.1016/j.biortech.2005.05.015.
[64] S. M. Mgana. (2003). Towards Sustainable And Robust Community on Site Domestic Wastewater [Phd Thesis]. DOI: 10.1016/j.biortech.2005.05.015.
[65] J.-H. Tay, Y.-G. Yan. (1996). Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors. Water Environment Research.68(7):1140-1150. DOI: 10.1016/j.biortech.2005.05.015.
[66] W. R. Abma, W. Driessen, R. Haarhuis, M. C. M. Van Loosdrecht. et al.(2010). Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater. Water Science and Technology.61(7):1715-1722. DOI: 10.1016/j.biortech.2005.05.015.
[67] J.-H. Tay, H.-L. Xu, K.-C. Teo. (2000). Molecular mechanism of granulation. I: H+ translocation-dehydration theory. Journal of Environmental Engineering.126(5):403-410. DOI: 10.1016/j.biortech.2005.05.015.
[68] S. Aiyuk, W. Verstraete. (2004). Sedimentological evolution in an UASB treating SYNTHES, a new representative synthetic sewage, at low loading rates. Bioresource Technology.93(3):269-278. DOI: 10.1016/j.biortech.2005.05.015.
[69] K. S. Singh, T. Viraraghavan, D. Bhattacharyya. (2006). Sludge blanket height and flow pattern in UASB reactors: Temperature effects. Journal of Environmental Engineering.132(8):895-900. DOI: 10.1016/j.biortech.2005.05.015.
[70] K. Karim, S. K. Gupta. (2003). Continuous biotransformation and removal of nitrophenols under denitrifying conditions. Water Research.37(12):2953-2959. DOI: 10.1016/j.biortech.2005.05.015.
[71] S. R. Guiot, A. Pauss, J. W. Costerton. (1992). A structured model of the anaerobic granule consortium. Water Science and Technology.25(7):1-10. DOI: 10.1016/j.biortech.2005.05.015.
[72] K. Karim, R. Hoffmann, K. T. Klasson, M. H. Al-Dahhan. et al.(2005). Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research.39(15):3597-3606. DOI: 10.1016/j.biortech.2005.05.015.
[73] H. Fang, Y. Liu. (2001). Anaerobic wastewater treatment in (sub-) tropical regions. Advances in Water and Wastewater Treatment Technology.285. DOI: 10.1016/j.biortech.2005.05.015.
[74] Y. Zhang, J. Shen. (2006). Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. International Journal of Hydrogen Energy.31(4):441-446. DOI: 10.1016/j.biortech.2005.05.015.
[75] L. Singh, Z. A. Wahid. (2015). Methods for enhancing bio-hydrogen production from biological process: A review. Journal of Industrial and Engineering Chemistry.21:70-80. DOI: 10.1016/j.biortech.2005.05.015.
[76] H. Salvadó, M. P. Gracia. (1993). Determination of organic loading rate of activated sludge plants based on protozoan analysis. Water Research.27(5):891-895. DOI: 10.1016/j.biortech.2005.05.015.
[77] P. Mohammadi, S. Ibrahim, M. S. M. Annuar, S. Ghafari. et al.(2012). Influences of environmental and operational factors on dark fermentative hydrogen production: a review. CLEAN—Soil, Air, Water.40(11):1297-1305. DOI: 10.1016/j.biortech.2005.05.015.
[78] D. H. Liu, B. G. Liptak. (1999). Environmental Engineers' Handbook on CD-ROM. DOI: 10.1016/j.biortech.2005.05.015.
[79] P. Kaparaju, I. Buendia, L. Ellegaard, I. Angelidakia. et al.(2008). Effects of mixing on methane production during thermophilic anaerobic digestion of manure: lab-scale and pilot-scale studies. Bioresource Technology.99(11):4919-4928. DOI: 10.1016/j.biortech.2005.05.015.
[80] Y. Kawagoshi, N. Hino, A. Fujimoto, M. Nakao. et al.(2005). Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production. Journal of Bioscience and Bioengineering.100(5):524-530. DOI: 10.1016/j.biortech.2005.05.015.
[81] Y. Sharma, B. Li. (2010). Optimizing energy harvest in wastewater treatment by combining anaerobic hydrogen producing biofermentor (HPB) and microbial fuel cell (MFC). International Journal of Hydrogen Energy.35(8):3789-3797. DOI: 10.1016/j.biortech.2005.05.015.
[82] Y. Mu, H.-Q. Yu. (2006). Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules. Biotechnology and Bioengineering.94(5):980-987. DOI: 10.1016/j.biortech.2005.05.015.
[83] B. S. Fernandes, G. Peixoto, F. R. Albrecht, N. K. Saavedra del Aguila. et al.(2010). Potential to produce biohydrogen from various wastewaters. Energy for Sustainable Development.14(2):143-148. DOI: 10.1016/j.biortech.2005.05.015.
[84] B. Picot, J. Paing, J. P. Sambuco, R. H. R. Costa. et al.(2003). Biogas production, sludge accumulation and mass balance of carbon in anaerobic ponds. Water Science and Technology.48(2):243-250. DOI: 10.1016/j.biortech.2005.05.015.
[85] H. Toprak. (1995). Temperature and organic loading dependency of methane and carbon dioxide emission rates of a full-scale anaerobic waste stabilization pond. Water Research.29(4):1111-1119. DOI: 10.1016/j.biortech.2005.05.015.
[86] R. G. Veronez, A. A. Orra, R. Ribeiro, M. Zaiat. et al.(2005). A simplified analysis of granule behavior in ASBR and UASB reactors treating low-strength synthetic wastewater. Brazilian Journal of Chemical Engineering.22(3):361-369. DOI: 10.1016/j.biortech.2005.05.015.
[87] B. Lew, I. Lustig, M. Beliavski, S. Tarre. et al.(2011). An integrated UASB-sludge digester system for raw domestic wastewater treatment in temperate climates. Bioresource Technology.102(7):4921-4924. DOI: 10.1016/j.biortech.2005.05.015.
[88] A. Vlyssides, E. M. Barampouti, S. Mai. (2008). Determination of granule size distribution in a UASB reactor. Journal of Environmental Management.86(4):660-664. DOI: 10.1016/j.biortech.2005.05.015.
[89] Y. Liu, H.-L. Xu, S.-F. Yang, J.-H. Tay. et al.(2003). Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research.37(3):661-673. DOI: 10.1016/j.biortech.2005.05.015.
[90] A. Abdelgadir, X. Chen, J. Liu, X. Xie. et al.(2014). Characteristics, process parameters, and inner components of anaerobic bioreactors. BioMed Research International.2014-10. DOI: 10.1016/j.biortech.2005.05.015.
[91] N. Khalil, R. Sinha, A. Raghav, A. Mittal. et al.UASB technology for sewage treatment in India: experience, economic evaluation and its potential in other developing countries. . DOI: 10.1016/j.biortech.2005.05.015.
[92] A. Mostafa, M. Elsamadony, A. El-Dissouky, A. Elhusseiny. et al.(2017). Biological H2 potential harvested from complex gelatinaceous wastewater via attached versus suspended growth culture anaerobes. Bioresource Technology.231:9-18. DOI: 10.1016/j.biortech.2005.05.015.
[93] S. Paudel, Y. Kang, Y.-S. Yoo, G. T. Seo. et al.(2015). Hydrogen production in the anaerobic treatment of domestic-grade synthetic wastewater. Sustainability.7(12):16260-16272. DOI: 10.1016/j.biortech.2005.05.015.
[94] T.-T. Ren, Y. Mu, B.-J. Ni, H.-Q. Yu. et al.(2009). Hydrodynamics of upflow anaerobic sludge blanket reactors. AIChE Journal.55(2):516-528. DOI: 10.1016/j.biortech.2005.05.015.
[95] D. Dionisi, I. M. O. Silva. (2016). Production of ethanol, organic acids and hydrogen: an opportunity for mixed culture biotechnology?. Reviews in Environmental Science and Bio/Technology.15(2):213-242. DOI: 10.1016/j.biortech.2005.05.015.
[96] M. Tandukar, A. Ohashi, H. Harada. (2007). Performance comparison of a pilot-scale UASB and DHS system and activated sludge process for the treatment of municipal wastewater. Water Research.41(12):2697-2705. DOI: 10.1016/j.biortech.2005.05.015.
[97] S. Farajzadehha, S. Mirbagheri, S. Farajzadehha, J. Shayegan. et al.(2012). Lab scale study of HRT and OLR optimization in UASB reactor for pretreating fortified wastewater in various operational temperatures. APCBEE Procedia.1:90-95. DOI: 10.1016/j.biortech.2005.05.015.
[98] Y. Miron. (1997). Anaerobic Treatment of Domestic Sewage with a Two-step Uasr-Uasb System. DOI: 10.1016/j.biortech.2005.05.015.
[99] A. Tawfik, F. El-Gohary, H. Temmink. (2010). Treatment of domestic wastewater in an up-flow anaerobic sludge blanket reactor followed by moving bed biofilm reactor. Bioprocess and Biosystems Engineering.33(2):267-276. DOI: 10.1016/j.biortech.2005.05.015.
[100] S. Uemura, H. Harada. (2000). Treatment of sewage by a UASB reactor under moderate to low temperature conditions. Bioresource Technology.72(3):275-282. DOI: 10.1016/j.biortech.2005.05.015.
[101] I. Ruiz, M. Soto, M. C. Veiga, P. Ligero. et al.Performance of and biomass characterisation in a UASB reactor treating domestic waste water at ambient temperature. . DOI: 10.1016/j.biortech.2005.05.015.
[102] G. Kyazze, R. Dinsdale, A. J. Guwy, F. R. Hawkes. et al.(2007). Performance characteristics of a two-stage dark fermentative system producing hydrogen and methane continuously. Biotechnology and Bioengineering.97(4):759-770. DOI: 10.1016/j.biortech.2005.05.015.
[103] T. E. Possmoser-Nascimento, V. A. J. Rodrigues, M. Sperling, J.-L. Vasel. et al.(2014). Sludge accumulation in shallow maturation ponds treating UASB reactor effluent: results after 11 years of operation. Water Science and Technology.70(2):321-328. DOI: 10.1016/j.biortech.2005.05.015.
[104] C. A. L. Chernicharo, M. Dos Reis Cardoso. (1999). Development and evaluation of a partitioned upflow anaerobic sludge blanket (UASB) reactor for the treatment of domestic sewage from small villages. Water Science and Technology.40(8):107-113. DOI: 10.1016/j.biortech.2005.05.015.
[105] M. Von Sperling, V. H. Freire, C. A. De Lemos Chernicharo. (2001). Performance evaluation of a UASB-activated sludge system treating municipal wastewater. Water Science & Technology.43(11):323-328. DOI: 10.1016/j.biortech.2005.05.015.
[106] C. A. L. Chernicharo, P. G. S. Almeida, L. C. S. Lobato, T. C. Couto. et al.(2009). Experience with the design and start up of two full-scale UASB plants in Brazil: enhancements and drawbacks. Water Science and Technology.60(2):507-515. DOI: 10.1016/j.biortech.2005.05.015.
[107] Z. Sawajneh, A. Al-Omari, M. Halalsheh. (2010). Anaerobic treatment of strong sewage by a two stage system of AF and UASB reactors. Water Science and Technology.61(9):2399-2406. DOI: 10.1016/j.biortech.2005.05.015.
[108] H. Rizvi, N. Ahmad, A. Yasar, K. Bukhari. et al.(2013). Disinfection of UASB-treated municipal wastewater by H2O 2, UV, ozone, PAA, H2O2/sunlight, and advanced oxidation processes: regrowth potential of pathogens. Polish Journal of Environmental Studies.22(4):1153-1161. DOI: 10.1016/j.biortech.2005.05.015.
[109] E. Alonso, A. Santos, P. Riesco. (2004). Micro-organism re-growth wastewater disinfected by UV radiation and ozone: a micro-biological study. Environmental Technology.25(4):433-441. DOI: 10.1016/j.biortech.2005.05.015.
[110] A. C. Haandel, G. Lettinga. (1994). Anaerobic Sewage Treatment: A Practical Guide for Regions with A Hot Climate. DOI: 10.1016/j.biortech.2005.05.015.
[111] J. E. Schmidt, B. K. Ahring. (1996). Granular sludge formation in upflow anaerobic sludge blanket (UASB) reactors. Biotechnology and Bioengineering.49(3):229-246. DOI: 10.1016/j.biortech.2005.05.015.
[112] T. G. Jantsch, I. Angelidaki, J. E. Schmidt, B. E. Braa de Hvidsten. et al.(2002). Anaerobic biodegradation of spent sulphite liquor in a UASB reactor. Bioresource Technology.84(1):15-20. DOI: 10.1016/j.biortech.2005.05.015.
[113] B. Wu, W. Zhou. (2010). Investigation of soluble microbial products in anaerobic wastewater treatment effluents. Journal of Chemical Technology and Biotechnology.85(12):1597-1603. DOI: 10.1016/j.biortech.2005.05.015.
[114] M. Henze, A. Ledin. Types, characteristics and quantities of classic, combined domestic wastewaters. . DOI: 10.1016/j.biortech.2005.05.015.
[115] W. Zhou, B. Wu, Q. She, L. Chi. et al.(2009). Investigation of soluble microbial products in a full-scale UASB reactor running at low organic loading rate. Bioresource Technology.100(14):3471-3476. DOI: 10.1016/j.biortech.2005.05.015.
[116] S. J. Zhang, N. R. Liu, C. X. Zhang. (2013). Study on the performance of modified UASB process treating sewage. Advanced Materials Research.610–613:2174-2178. DOI: 10.1016/j.biortech.2005.05.015.
[117] N. Sundaresan, L. Philip. (2008). Performance evaluation of various aerobic biological systems for the treatment of domestic wastewater at low temperatures. Water Science and Technology.58(4):819-830. DOI: 10.1016/j.biortech.2005.05.015.
[118] F. I. Turkdogan-Aydinol, K. Yetilmezsoy. (2010). A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. Journal of Hazardous Materials.182(1–3):460-471. DOI: 10.1016/j.biortech.2005.05.015.
[119] X.-G. Chen, P. Zheng, J. Cai, M. Qaisar. et al.(2010). Bed expansion behavior and sensitivity analysis for super-high-rate anaerobic bioreactor. Journal of Zhejiang University SCIENCE B.11(2):79-86. DOI: 10.1016/j.biortech.2005.05.015.
[120] L. Foresti. (2002). Anaerobic treatment of domestic sewage: established technologies and perspectives. Water Science and Technology.45(10):181-186. DOI: 10.1016/j.biortech.2005.05.015.
[121] O. R. Zimmo, N. P. van der Steen, H. J. Gijzen. (2005). Effect of organic surface load on process performance of pilot-scale algae and duckweed-based waste stabilization ponds. Journal of Environmental Engineering.131(4):587-594. DOI: 10.1016/j.biortech.2005.05.015.
文献评价指标
浏览 192次
下载全文 29次
评分次数 0次
用户评分 0.0分
分享 5次