首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2018 ,2018-01-23
A Study of Mechanical Property of Artificial Frozen Clay under Dynamic Load
Research Article
Dongwei Li 1 , 2 , 3 Juhong Fan 3
Show affiliations
DOI:10.1155/2018/5392641
Received 2017-07-31, accepted for publication 2017-11-13, Published 2017-11-13
PDF
摘要

To determine the mechanical properties of artificial frozen clay under dynamic load, 81 triaxial shear tests were carried out for artificial frozen clay at different temperatures, amplitudes, frequencies, and precompressions and three kinds of testing conditions. The change laws of the dynamic modulus of elasticity, maximum dynamic shear modulus, dynamic damping ratio, and strain rate were determined. These results can guide future research on the mechanical mechanisms of frozen soil, providing both theoretical and practical significance.

授权许可

Copyright © 2018 Dongwei Li and Juhong Fan. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

W3Z-200-type low-temperature triaxial test system for frozen soil.

Displacement of piston under axial load (T = −10°C, f = 0.2 Hz, σ3 = 0.5 MPa, and A = 0.5 mm).

Axial stress curve (T = −10°C, f = 0.2 Hz, σ3 = 0.5 MPa, and A = 0.5 mm).

Strain curve of test piece no. 3 for the test with orthogonal method (T = −5°C, σ3 = 1.5 MPa, and f = 0.6 Hz).

Stress-strain curve of frozen soil under the cyclic load (T = −10°C, f = 0.2 Hz, σ3 = 0.5 MPa, and A = 0.5 mm).

Detail drawing of the dynamic stress-strain path of artificial frozen soil (stage I).

Detail drawing of the dynamic stress-strain of artificial frozen soil (stage III).

Dynamic stress-strain curve of frozen soil (f = 0.2 Hz, σ3 = 0.5 MPa, and A = 0.5 mm).

Relation between dynamic damping ratio and confining pressure.

Relation curve of dynamic modulus of elasticity and confining pressure. (a) T = −5°C. (b) T = −10°C. (c) T = −15°C.

Relation curve of dynamic modulus of elasticity and confining pressure. (a) T = −5°C. (b) T = −10°C. (c) T = −15°C.

Relation curve of dynamic modulus of elasticity and confining pressure. (a) T = −5°C. (b) T = −10°C. (c) T = −15°C.

Curve showing the stress hysteresis loop of frozen soil.

Relation between dynamic damping ratio and temperature.

Relation between strain increase per vibration cycle and vibration times.

通讯作者

Dongwei Li.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China, cas.cn;School of Civil Engineering, Fujian University of Technology, Fuzhou 350108, China, fjut.edu.cn;School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, China, aust.edu.cn.dwli2005@163.com

推荐引用方式

Dongwei Li,Juhong Fan. A Study of Mechanical Property of Artificial Frozen Clay under Dynamic Load. Advances in Civil Engineering ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
5

是否收藏?

参考文献
[1] D. F. Dagesses. (2013). Freezing cycle effects on water stability of soil aggregates. Canadian Journal of Soil Science.93(4):473-483. DOI: 10.1007/s12665-010-0813-y.
[2] X. D. Zhao, G. Q. Zhou, G. L. Lu. (2017). Strain responses of frozen clay with thermal gradient under triaxial creep. Acta Geotechnica.12(1):183-193. DOI: 10.1007/s12665-010-0813-y.
[3] T. Chaichanavong. (1976). Dynamic properties of ice and frozen clay under cyclic triaxial loading conditions [Ph.D. Thesis]. DOI: 10.1007/s12665-010-0813-y.
[4] D. D. Ma, Q. Y. Ma, P. Yuan. (2017). SHPB tests and dynamic constitutive model of artificial frozen sandy clay under confining pressure and temperature state. Cold Regions Science and Technology.136:37-43. DOI: 10.1007/s12665-010-0813-y.
[5] B. Perrin, N. A. Vu, S. Multon, T. Voland. et al.(2011). Mechanical behaviour of fired clay materials subjected to freeze-thaw cycles. Construction and Building Materials.25(2):1056-1064. DOI: 10.1007/s12665-010-0813-y.
[6] Y. G. Yang, F. Gao, Y. M. Lai, H. M. Chen. et al.(2016). Experimental and theoretical investigations on the mechanical behavior of frozen silt. Cold Regions Science and Technology.130:59-65. DOI: 10.1007/s12665-010-0813-y.
[7] M. Olgun. (2013). The effects and optimization of additives for expansive clays under freeze-thaw conditions. Cold Regions Science and Technology.93:36-46. DOI: 10.1007/s12665-010-0813-y.
[8] D. W. Li, J. H. Fan, H. M. Chen, J. H. Chen. et al.(2011). Study on the numerical simulation of massive concrete sidewall hydration heat under negative temperature transient boundary. Advanced Materials Research.163-167:2560-2563. DOI: 10.1007/s12665-010-0813-y.
[9] N. C. Consoil, K. da Silva, S. Filho, A. B. Rivoire. et al.(2017). Compacted clay-industrial wastes blends: long term performance under extreme freeze-thaw and wet-dry conditions. Applied Clay Science.146:404-410. DOI: 10.1007/s12665-010-0813-y.
[10] T. Ohkubo, M. Ibaraki, Y. Tachi, Y. Iwadate. et al.(2016). Pore distribution of water saturated compacted clay using NMR relaxometry and freezing temperature depression; effects of density and salt concentration. Applied Clay Sciences.123:148-155. DOI: 10.1007/s12665-010-0813-y.
[11] Y. L. Chen, R. Azzam, M. Wang, S. Xu. et al.(2011). The uniaxial compressive and tensile tests of frozen saturated clay in Shanghai area. Environmental Earth Sciences.64(1):29-36. DOI: 10.1007/s12665-010-0813-y.
[12] Y. M. Lai, S. Y. Li, J. L. Qi, Z. H. Gao. et al.(2008). Strength distributions of warm frozen clay and its stochastic damage constitutive model. Cold Regions Science and Technology.53(2):200-215. DOI: 10.1007/s12665-010-0813-y.
[13] G. P. Makusa, S. L. Bradshaw, E. Berns, C. H. Benson. et al.(2014). Freeze-thaw cycling concurrent with cation exchange and hydraulic conductivity of geosynthetic clay liners. Canadian Geotechnical Journal.51(6):591-598. DOI: 10.1007/s12665-010-0813-y.
[14] D. W. Li, J. H. Fan, R. H. Wang. (2011). Research on visco elastic-plastic creep model of artificial frozen soil under high confining pressures. Cold Regions Science and Technology.65(2):219-225. DOI: 10.1007/s12665-010-0813-y.
[15] D. W. Li, D. W. Xu, J. H. Fan, R. H. Wang. et al.(2011). Experimental research on frost heaving of artificially frozen soil. Advanced Materials Research.185:3156-3160. DOI: 10.1007/s12665-010-0813-y.
[16] J. Li, Y. Q. Tang, P. Yang, Q. Liu. et al.(2015). Dynamic properties of freezing-thawing muddy clay surrounding subway tunnel in Shanghai. Environmental Earth Sciences.74(6):5341-5359. DOI: 10.1007/s12665-010-0813-y.
[17] L. U. Arenson, S. M. Springman, D. C. Sego. (2011). The rheology of frozen soils. Applied Rheology.17(1). DOI: 10.1007/s12665-010-0813-y.
文献评价指标
浏览 256次
下载全文 42次
评分次数 0次
用户评分 0.0分
分享 5次