首页 » 文章 » 文章详细信息
Journal of Spectroscopy Volume 2017 ,2017-12-27
Analytic Method on Characteristic Parameters of Bacteria in Water by Multiwavelength Transmission Spectroscopy
Research Article
Yuxia Hu 1 , 2 , 3 Nanjing Zhao 1 , 3 Tingting Gan 1 , 3 Jingbo Duan 1 , 3 Hui Juan Yu 1 , 2 , 3 Deshuo Meng 1 , 3 Jianguo Liu 1 , 3 Wenqing Liu 1 , 3
Show affiliations
DOI:10.1155/2017/4039048
Received 2017-04-19, accepted for publication 2017-10-31, Published 2017-10-31
PDF
摘要

An analytic method together with the Mie scattering theory and Beer-Lambert law is proposed for the characteristic parameter determination of bacterial cells (Escherichia coli 10389) from multiwavelength transmission spectroscopy measurements. We calculate the structural parameters of E. coli cells, and compared with the microscopy, the relative error of cell volume is 7.90%, the cell number is compared with those obtained by plate counting, the relative error is l.02%, and the nucleic content and protein content of single E. coli cells are consistent with the data reported elsewhere. The proposed method can obtain characteristic parameters of bacteria as an excellent candidate for the rapid detection and identification of bacteria in the water.

授权许可

Copyright © 2017 Yuxia Hu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Multiwavelength transmission spectra of purified E. coli.

Comparison between measured and calculated normalized optical density spectra of E. coli in the wavelength range from 400 to 820 nm, the residuals are included.

Plot of measured optical density as a function of a single bacterial optical density, the continuous line corresponds to a fitting using (8).

The decomposition of E. coli spectral data: scattering and absorption components.

Comparison of the absorption coefficient of total nucleic acid, chromophoric amino acids, and dipicolinic acid weighted by their typical concentration in microorganism [38].

Quantitative analysis of E. coli absorption component: nucleic acid and protein components.

Three measured multiwavelength transmission spectra (230–820 nm) of purified E. coli.

通讯作者

Nanjing Zhao.Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China, cas.cn;Key Laboratory of Optical Monitoring Technology for Environment, Anhui Province, Hefei 230031, China.njzhao@aiofm.ac.cn

推荐引用方式

Yuxia Hu,Nanjing Zhao,Tingting Gan,Jingbo Duan,Hui Juan Yu,Deshuo Meng,Jianguo Liu,Wenqing Liu. Analytic Method on Characteristic Parameters of Bacteria in Water by Multiwavelength Transmission Spectroscopy. Journal of Spectroscopy ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
17

是否收藏?

参考文献
[1] V. Erukhimovitch, M. Huleihil, M. Huleihel. (2013). Identification of contaminated cells with viruses, bacteria, or fungi by Fourier transform infrared microspectroscopy. Journal of Spectroscopy.2013-6. DOI: 10.1016/j.bios.2015.11.018.
[2] J. A. Valkenburg, C. L. Woldringh. (1984). Phase separation between nucleoid and cytoplasm in as defined by immersive refractometry. Journal of Bacteriology.160(3):1151-1157. DOI: 10.1016/j.bios.2015.11.018.
[3] K. Chand, S. K. Biswas, B. Sing, A. De. et al.(2009). A sandwich ELISA for the detection of bluetongue virus in cell culture using antiserum against the recombinant VP7 protein. Veterinaria Italiana.45(3):443-448. DOI: 10.1016/j.bios.2015.11.018.
[4] L. Yuan, J. H. Fang, Y. L. Jin, C. Wang. et al.(2015). A biomedical surface enhanced Raman scattering substrate: functionalized three-dimensional porous membrane decorated with silver nanoparticles. Journal of Spectroscopy.2015-5. DOI: 10.1016/j.bios.2015.11.018.
[5] M. Sohn, D. S. Himmelsbach, F. E. Barton, P. J. Fedorka-Cray. et al.(2009). Fluorescence spectroscopy for rapid detection and classification of bacterial pathogens. Applied Spectroscopy.63(11):1251-1255. DOI: 10.1016/j.bios.2015.11.018.
[6] C. E. Alupoaei, J. A. Olivares, L. H. García-Rubio. (2004). Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores. Biosensors and Bioelectronics.19(8):893-903. DOI: 10.1016/j.bios.2015.11.018.
[7] Z. H. Liao, Y. H. Luo, Z. L. Jiang, J. Y. Xiu. et al.(2003). Resonance scattering spectroscopic study of coli bacillus. Analysis and Testing Technology and Instruments.9(2):65-69. DOI: 10.1016/j.bios.2015.11.018.
[8] H. E. Giana, L. Silveira, R. A. Zângaro, M. T. T. Pacheco. et al.(2003). Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis. Journal of Fluorescence.13(6):489-493. DOI: 10.1016/j.bios.2015.11.018.
[9] A. Sengupta, M. Mujacic, E. J. Davis. (2006). Detection of bacteria by surface-enhanced Raman spectroscopy. Analytical and Bioanalytical Chemistry.386(5):1379-1386. DOI: 10.1016/j.bios.2015.11.018.
[10] J. Y. Wang, N. J. Zhao, J. B. Duan. (2017). Rapid quantitative detection of bacterial in water based on multi-wavelength scattering spectra. Spectroscopy and Spectral Analysis.37(2):333-337. DOI: 10.1016/j.bios.2015.11.018.
[11] Y. M. Serebrennikova, J. Patel, L. H. Garcia-Rubio. (2010). Interpretation of the ultraviolet-visible spectra of malaria parasite. Applied Optics.49(2):180-188. DOI: 10.1016/j.bios.2015.11.018.
[12] M. Barreiros dos Santos, C. Sporer, N. Sanvicens, N. Pascual. et al.(2009). Detection of pathogenic bacteria by electrochemical impedance spectroscopy: influence of the immobilization strategies on the sensor performance. Procedia Chemistry.1(1):1291-1294. DOI: 10.1016/j.bios.2015.11.018.
[13] P. Geng. (2008). Research on the application of electro-analytical methods of the rapid detection of E. coli. DOI: 10.1016/j.bios.2015.11.018.
[14] I. Altamore, L. Lanzano, E. Gratton. (2013). Dual channel detection of ultra low concentration of bacteria in real time by scanning fluorescence correlation spectroscopy. Measurement Science and Technology.24(6, article 065702). DOI: 10.1016/j.bios.2015.11.018.
[15] I. H. Cho, P. Bhandari, P. Patel, J. Irudayaraj. et al.(2015). Membrane filter-assisted surface enhanced Raman spectroscopy for the rapid detection of O157:H7 in ground beef. Biosensors and Bioelectronics.64:171-176. DOI: 10.1016/j.bios.2015.11.018.
[16] S. Cooper. (1991). Bacterial Growth and Division. DOI: 10.1016/j.bios.2015.11.018.
[17] P. Shen, X. D. Chen. (2016). Microbiology. DOI: 10.1016/j.bios.2015.11.018.
[18] M. R. Callahan, R. Robertson, J. B. Rose, L. H. Garcia Rubio. et al.(2003). Use of multiwavelength transmission spectroscopy for the characterization of oocysts: quantitative interpretation. Environmental Science & Technology.37(22):5254-5261. DOI: 10.1016/j.bios.2015.11.018.
[19] G. Churchward, H. Bremer, R. Young. (1982). Macromolecular composition of bacteria. Journal of Theoretical Biology.94(3):651-670. DOI: 10.1016/j.bios.2015.11.018.
[20] A. Katz, A. Alimova, M. Xu, E. Rudolph. et al.(2003). Bacteria size determination by elastic light scattering. IEEE Journal of Selected Topics in Quantum Electronics.9(2):277-287. DOI: 10.1016/j.bios.2015.11.018.
[21] N. Esiobu. (2006). Use of peptide nucleic acid probes for rapid detection and enumeration of viable bacteria in recreational waters and beach sand. Methods in Molecular Biology.345:131-140. DOI: 10.1016/j.bios.2015.11.018.
[22] J. De Gelder, K. De Gussem, P. Vandenabeele, L. Moens. et al.(2007). Reference database of Raman spectra of biological molecules. Journal of Raman Spectroscopy.38(9):1133-1147. DOI: 10.1016/j.bios.2015.11.018.
[23] Y. J. Guo. (1987). Spectrophotometric Technique and Its Application in Biochemistry. DOI: 10.1016/j.bios.2015.11.018.
[24] P. Poltronieri, F. Cimaglia, E. de Lorenzis, M. Chiesa. et al.(2016). Protein chips for detection of spp. from enrichment culture. Sensors.16(4):574. DOI: 10.1016/j.bios.2015.11.018.
[25] A. H. Spear, K. Daly, D. Huffman, L. Garcia-Rubio. et al.(2009). Progress in developing a new detection method for the harmful algal bloom species, , through multiwavelength spectroscopy. Harmful Algae.8(2):189-195. DOI: 10.1016/j.bios.2015.11.018.
[26] P. A. Staehr, J. J. Cullen. (2003). Detection of by spectral absorption signatures. Journal of Plankton Research.25(10):1237-1249. DOI: 10.1016/j.bios.2015.11.018.
[27] C. E. Alupoaei, L. H. García-Rubio. (2005). An interpretation model for the UV-VIS spectra of microorganisms. Chemical Engineering Communications.192(2):198-218. DOI: 10.1016/j.bios.2015.11.018.
[28] R. R. Hu, Z. Z. Yin, Y. B. Zeng, J. Zhang. et al.(2016). A novel biosensor for O157:H7 based on fluorescein-releasable biolabels. Biosensors and Bioelectronics.78:31-36. DOI: 10.1016/j.bios.2015.11.018.
[29] J. Wang, K. H. Kim, S. Kim, Y. S. Kim. et al.(2010). Simple quantitative analysis of K-12 internalized in baby spinach using Fourier transform infrared spectroscopy. International Journal of Food Microbiology.144(1):145-151. DOI: 10.1016/j.bios.2015.11.018.
[30] M. Wenning, F. Breitenwieser, R. Konrad, I. Huber. et al.(2014). Identification and differentiation of food-related bacteria: a comparison of FTIR spectroscopy and MALDI-TOF mass spectrometry. Journal of Microbiological Methods.103:44-52. DOI: 10.1016/j.bios.2015.11.018.
[31] Y. D. Mattley, L. H. Garcia-Rubio. (2001). Multiwavelength spectroscopy for the detection, identification and quantification of cells. :45-51. DOI: 10.1016/j.bios.2015.11.018.
[32] M. Mölsä, K. A. Koskela, E. Rönkkö, N. Ikonen. et al.(2012). Detection of influenza A viruses with a portable real-time PCR instrument. Journal of Virological Methods.181(2):188-191. DOI: 10.1016/j.bios.2015.11.018.
[33] R. Parveen, S. Saha, S. Shamshuzzaman, A. L. Rashid. et al.(2011). Detection of uropathogens by using chromogenic media (Hicrome UTI agar), CLED agar and other conventional media. Faridpur Medical College Journal.6(1):46-50. DOI: 10.1016/j.bios.2015.11.018.
[34] J. R. Mourant, M. Campolat, C. Brocke. (2000). Light scattering from cells: the contribution of the nucleus and the effects of proliferative status. Journal of Biomedical Optics.5(2):131-137. DOI: 10.1016/j.bios.2015.11.018.
[35] H. Y. Tsen, C. K. Lin, W. R. Chi. (1998). Development and use of 16S rRNA gene targeted PCR primers for the identification of cells in water. Journal of Applied Microbiology.85(3):554-560. DOI: 10.1016/j.bios.2015.11.018.
[36] A. M. Loske, E. M. Tello, S. Vargas, R. Rodriguez. et al.(2014). viability determination using dynamic light scattering: a comparison with standard methods. Archives of Microbiology.196(8):557-563. DOI: 10.1016/j.bios.2015.11.018.
[37] T. J. Straub, U. Grigull. (1985). Refractive index of water and its dependence on wavelength, temperature, and density. Journal of Physical and Chemical Reference Data.14(4):933-945. DOI: 10.1016/j.bios.2015.11.018.
[38] Y. Moreno, P. Piqueres, J. L. Alonso, A. Jiménez. et al.(2007). Survival and viability of after inoculation into chlorinated drinking water. Water Research.41(15):3490-3496. DOI: 10.1016/j.bios.2015.11.018.
[39] C. F. Bohren, D. R. Huffman. (1983). Absorption and Scattering of Sight by Small Particles. DOI: 10.1016/j.bios.2015.11.018.
[40] Y. Mattley, G. Leparc, R. Potter, L. García-Rubio. et al.(2000). Light scattering and absorption model for the quantitative interpretation of human platelet spectral data. Photochemistry and Photobiology.71(5):610-619. DOI: 10.1016/j.bios.2015.11.018.
[41] L. H. Garcia-Rubio, C. E. Alupoaei, J. Olivares, P. Stark. et al.(2004). A new spectroscopy method for in-situ rapid detection and classification of microorganisms. Proceeding of SPIE.5585:88-97. DOI: 10.1016/j.bios.2015.11.018.
文献评价指标
浏览 54次
下载全文 5次
评分次数 0次
用户评分 0.0分
分享 17次