首页 » 文章 » 文章详细信息
BioMed Research International Volume 2017 ,2017-12-28
Antifungal Compounds against Candida Infections from Traditional Chinese Medicine
Review Article
Xin Liu 1 Zhiming Ma 2 Jingxiao Zhang 3 Longfei Yang 4
Show affiliations
Received 2017-08-25, accepted for publication 2017-12-06, Published 2017-12-06

Infections caused by Candida albicans, often refractory and with high morbidity and mortality, cause a heavy burden on the public health while the current antifungal drugs are limited and are associated with toxicity and resistance. Many plant-derived molecules including compounds isolated from traditional Chinese medicine (TCM) are reported to have antifungal activity through different targets such as cell membrane, cell wall, mitochondria, and virulence factors. Here, we review the recent progress in the anti-Candida compounds from TCM, as well as their antifungal mechanisms. Considering the diverse targets and structures, compounds from TCM might be a potential library for antifungal drug development.


Copyright © 2017 Xin Liu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Longfei Yang.Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, China, jlu.edu.cn.yanglongfei@jlu.edu.cn


Xin Liu,Zhiming Ma,Jingxiao Zhang,Longfei Yang. Antifungal Compounds against Candida Infections from Traditional Chinese Medicine. BioMed Research International ,Vol.2017(2017)



[1] A. M. Wassermann, E. Lounkine, D. Hoepfner, G. Le Goff. et al.(2015). Dark chemical matter as a promising starting point for drug lead discovery. Nature Chemical Biology.11(12):958-966. DOI: 10.1126/scitranslmed.3004404.
[2] K. Ingólfsdóttr. (2002). Usnic acid. Phytochemistry.61(7):729-736. DOI: 10.1126/scitranslmed.3004404.
[3] L. Li, X. Wang, R. Sharvan, J. Gao. et al.(2017). Berberine could inhibit thyroid carcinoma cells by inducing mitochondrial apoptosis, G0/G1 cell cycle arrest and suppressing migration via PI3K-AKT and MAPK signaling pathways. Biomedicine & Pharmacotherapy.95:1225-1231. DOI: 10.1126/scitranslmed.3004404.
[4] G. D. Wright. (2016). Antibiotic adjuvants: rescuing antibiotics from resistance. Trends in Microbiology.24(11):862-871. DOI: 10.1126/scitranslmed.3004404.
[5] P. Nithyanand, R. M. Beema Shafreen, S. Muthamil, S. Karutha Pandian. et al.(2015). Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiological Research.179:20-28. DOI: 10.1126/scitranslmed.3004404.
[6] A. M. A. El-Asrar, L. Missotten, K. Geboes. (2007). Expression of hypoxia-inducible factor-1 and the protein products of its target genes in diabetic fibrovascular epiretinal membranes. British Journal of Ophthalmology.91(6):822-826. DOI: 10.1126/scitranslmed.3004404.
[7] D. L. Moyes, D. Wilson, J. P. Richardson, S. Mogavero. et al.(2016). Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature.532(7597):64-68. DOI: 10.1126/scitranslmed.3004404.
[8] N. Konstantinidou, J. P. Morrissey. (2015). Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants. FEMS Yeast Research.15(8). DOI: 10.1126/scitranslmed.3004404.
[9] N. Samber, A. Khan, A. Varma, N. Manzoor. et al.(2015). Synergistic anti-candidal activity and mode of action of Mentha piperita essential oil and its major components. Pharmaceutical Biology.53(10):1496-1504. DOI: 10.1126/scitranslmed.3004404.
[10] A. Khan, A. Ahmad, L. Ahmad Khan, C. J. Padoa. et al.(2015). Effect of two monoterpene phenols on antioxidant defense system in Candida albicans. Microbial Pathogenesis.80:50-56. DOI: 10.1126/scitranslmed.3004404.
[11] L.-M. Sun, K. Liao, S. Liang, P.-H. Yu. et al.(2015). Synergistic activity of magnolol with azoles and its possible antifungal mechanism against Candida albicans. Journal of Applied Microbiology.118(4):826-838. DOI: 10.1126/scitranslmed.3004404.
[12] M. Wellington, K. Koselny, D. J. Krysan. (2012). Candida albicans morphogenesis is not required for macrophage interleukin 1 production.. mBio.4(1):e00433-00412. DOI: 10.1126/scitranslmed.3004404.
[13] S. K. Doke, J. S. Raut, S. Dhawale, S. M. Karuppayil. et al.(2014). Sensitization of candida albicans biofilms to fluconazole by terpenoids of plant origin. The Journal of General and Applied Microbiology.60(5):163-168. DOI: 10.1126/scitranslmed.3004404.
[14] J. S. Teodoro, F. V. Duarte, A. P. Gomes, A. T. Varela. et al.(2013). Berberine reverts hepatic mitochondrial dysfunction in high-fat fed rats: a possible role for SirT3 activation. Mitochondrion.13(6):637-646. DOI: 10.1126/scitranslmed.3004404.
[15] Y. Sun, X. Yuan, F. Zhang, Y. Han. et al.(2017). Berberine ameliorates fatty acid-induced oxidative stress in human hepatoma cells. Scientific Reports.7(1, article 11340). DOI: 10.1126/scitranslmed.3004404.
[16] S. Lee, E. Moon, S. U. Choi, K. H. Kim. et al.(2016). Lignans from the Twigs of Euonymus alatus (Thunb.) Siebold and their biological evaluation. Chemistry & Biodiversity.13:1391-1396. DOI: 10.1126/scitranslmed.3004404.
[17] M. Spitzer, N. Robbins, G. D. Wright. (2017). Combinatorial strategies for combating invasive fungal infections. Virulence.8(2):169-185. DOI: 10.1126/scitranslmed.3004404.
[18] J. Wildenhain, M. Spitzer, S. Dolma, N. Jarvik. et al.(2015). Prediction of synergism from chemical-genetic interactions by machine learning. Cell Systems.1(6):383-395. DOI: 10.1126/scitranslmed.3004404.
[19] R. X. Tan, H. Q. Tang, J. Hu, B. Shuai. et al.(1998). Lignans and sesquiterpene lactones from and. Phytochemistry.49(1):157-161. DOI: 10.1126/scitranslmed.3004404.
[20] F. Solórzano-Santos, M. G. Miranda-Novales. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current Opinion in Biotechnology.23(2):136-141. DOI: 10.1126/scitranslmed.3004404.
[21] C. M. C. Souza, S. A. Pereira Junior, T. da Silva Moraes, J.L. Damasceno. et al.(2016). Antifungal activity of plant-derived essential oils on planktonic and biofilms cells. Medical Mycology.54(5):515-523. DOI: 10.1126/scitranslmed.3004404.
[22] N. Uwamahoro, J. Verma-Gaur, H.-H. Shen, Y. Qu. et al.(2014). The pathogen hijacks pyroptosis for escape from macrophages. mBio.5(2):e00003-e00014. DOI: 10.1126/scitranslmed.3004404.
[23] M. Wellington, K. Koselny, F. S. Sutterwala, D. J. Krysan. et al.(2014). triggers NLRP3-mediated pyroptosis in macrophages. Eukaryotic Cell.13(2):329-340. DOI: 10.1126/scitranslmed.3004404.
[24] J. M. Bain, L. E. Lewis, B. Okai, J. Quinn. et al.(2012). Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genetics and Biology.49(9):677-678. DOI: 10.1126/scitranslmed.3004404.
[25] A. Aznar, P. S. Fernández, P. M. Periago, A. Palop. et al.(2015). Antimicrobial activity of nisin, thymol, carvacrol and cymene against growth of Candida lusitaniae. Food Science and Technology International.21(1):72-79. DOI: 10.1126/scitranslmed.3004404.
[26] Y. Lin, A. Wolk, N. Håkansson, J. Lagergren. et al.(2013). Dietary intake of lignans and risk of esophageal and gastric adenocarcinoma: a cohort study in Sweden. Cancer Epidemiology, Biomarkers & Prevention.22(2):308-312. DOI: 10.1126/scitranslmed.3004404.
[27] C. Marcos-Arias, E. Eraso, L. Madariaga, G. Quindós. et al.(2011). In vitro activities of natural products against oral isolates from denture wearers. BMC Complementary and Alternative Medicine.11, article 119-7. DOI: 10.1126/scitranslmed.3004404.
[28] A. S. Gilbert, R. T. Wheeler, R. C. May. (2015). Fungal pathogens: survival and replication within macrophages. Cold Spring Harbor Perspectives in Medicine.5(7, article a019661). DOI: 10.1126/scitranslmed.3004404.
[29] H. S. Elshafie, E. Mancini, S. Sakr, L. De Martino. et al.(2015). Antifungal activity of some constituents of origanum vulgare L. essential oil against postharvest disease of peach fruit. Journal of Medicinal Food.18(8):929-934. DOI: 10.1126/scitranslmed.3004404.
[30] A. Ahmad, A. Khan, L. A. Khan, N. Manzoor. et al.(2010). In vitro synergy of eugenol and methyleugenol with fluconazole against clinical Candida isolates. Journal of Medical Microbiology.59(10):1178-1184. DOI: 10.1126/scitranslmed.3004404.
[31] L. Meija, P. Söderholm, A. Samaletdin, G. Ignace. et al.(2013). Dietary intake and major sources of plant lignans in Latvian men and women. International Journal of Food Sciences and Nutrition.64(5):535-543. DOI: 10.1126/scitranslmed.3004404.
[32] M. N. Gallucci, M. E. Carezzano, M. M. Oliva, M. S. Demo. et al.(2014). activity of natural phenolic compounds against fluconazole-resistant species: a quantitative structure-activity relationship analysis. Journal of Applied Microbiology.116(4):795-804. DOI: 10.1126/scitranslmed.3004404.
[33] M. J. Saharkhiz, M. Motamedi, K. Zomorodian, K. Pakshir. et al.(2012). Chemical composition, antifungal and antibiofilm activities of the essential oil of L. ISRN Pharmaceutics.2012-6. DOI: 10.1126/scitranslmed.3004404.
[34] Y. Iida, K.-B. Oh, M. Saito, H. Matsuoka. et al.(1999). Detection of antifungal activity in Anemarrhena asphodeloides by sensitive BCT method and isolation of its active compound. Journal of Agricultural and Food Chemistry.47(2):584-587. DOI: 10.1126/scitranslmed.3004404.
[35] K. M. Lemar, O. Passa, M. A. Aon, S. Cortassa. et al.(2005). Allyl alcohol and garlic (Allium sativum) extract produce oxidative stress in Candida albicans. Microbiology.151(10):3257-3265. DOI: 10.1126/scitranslmed.3004404.
[36] A. Corral-Lugo, A. Daddaoua, A. Ortega, M. Espinosa-Urgel. et al.(2016). Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling.9(409, article no. ra1). DOI: 10.1126/scitranslmed.3004404.
[37] J. Madunić, I. V. Madunić, G. Gajski, J. Popić. et al.(2018). Apigenin: a dietary flavonoid with diverse anticancer properties. Cancer Letters.413:11-22. DOI: 10.1126/scitranslmed.3004404.
[38] L. M. Kaminskas, S. M. Pyke, P. C. Burcham. (2004). Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice. The Journal of Pharmacology and Experimental Therapeutics.310(3):1003-1010. DOI: 10.1126/scitranslmed.3004404.
[39] H. J. Park, J. Y. Lee, S. S. Moon, B. K. Hwang. et al.(2003). Isolation and anti-oomycete activity of nyasol from Anemarrhena asphodeloides rhizomes. Phytochemistry.64(5):997-1001. DOI: 10.1126/scitranslmed.3004404.
[40] H.-L. Cheah, V. Lim, D. Sandai. (2014). Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents. PLoS ONE.9(4). DOI: 10.1126/scitranslmed.3004404.
[41] Z. Rashki Ghalehnoo, A. Rashki, M. Najimi, A. Dominguez. et al.(2010). The role of diclofenac sodium in the dimorphic transition in Candida albicans. Microbial Pathogenesis.48(3-4):110-115. DOI: 10.1126/scitranslmed.3004404.
[42] B. Hwang, J. Lee, Q.-H. Liu, E.-R. Woo. et al.(2010). Antifungal effect of (+)-pinoresinol isolated from Sambucus williamsii. Molecules.15(5):3507-3516. DOI: 10.1126/scitranslmed.3004404.
[43] L. De Sordi, F. A. Mühlschlegel. (2009). Quorum sensing and fungal-bacterial interactions in Candida albicans: a communicative network regulating microbial coexistence and virulence. FEMS Yeast Research.9(7):990-999. DOI: 10.1126/scitranslmed.3004404.
[44] A. da Silva Dantas, K. K. Lee, I. Raziunaite, K. Schaefer. et al.(2016). Cell biology of Candida albicans–host interactions. Current Opinion in Microbiology.34:111-118. DOI: 10.1126/scitranslmed.3004404.
[45] C. A. Kumamoto, M. D. Vinces. (2005). Contributions of hyphae and hypha-co-regulated genes to virulence. Cellular Microbiology.7(11):1546-1554. DOI: 10.1126/scitranslmed.3004404.
[46] A. J. P. Brown, F. C. Odds, N. A. R. Gow. (2007). Infection-related gene expression in. Current Opinion in Microbiology.10(4):307-313. DOI: 10.1126/scitranslmed.3004404.
[47] H. Lee, H. Choi, H. J. Ko, E.-R. Woo. et al.(2014). Antifungal effect and mode of action of glochidioboside against Candida albicans membranes. Biochemical and Biophysical Research Communications.444(1):30-35. DOI: 10.1126/scitranslmed.3004404.
[48] M. Richardson, C. Lass-Flörl. (2008). Changing epidemiology of systemic fungal infections. Clinical Microbiology and Infection.14(4):5-24. DOI: 10.1126/scitranslmed.3004404.
[49] H. Choi, J. Cho, Q. Jin, E.-R. Woo. et al.(2012). Antifungal property of dihydrodehydrodiconiferyl alcohol 9′-O--d-glucoside and its pore-forming action in plasma membrane of Candida albicans. Biochimica et Biophysica Acta (BBA) - Biomembranes.1818(7):1648-1655. DOI: 10.1126/scitranslmed.3004404.
[50] H. H. Lara, D. G. Romero-Urbina, C. Pierce, J. L. Lopez-Ribot. et al.(2015). Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. Journal of Nanobiotechnology.13(1, article no. 91). DOI: 10.1126/scitranslmed.3004404.
[51] L.-X. Ren, Y.-F. Luo, X. Li, D.-Y. Zuo. et al.(2006). Antidepressant-like effects of sarsasapogenin from Anemarrhena asphodeloides Bunge (Liliaceae). Biological & Pharmaceutical Bulletin.29(11):2304-2306. DOI: 10.1126/scitranslmed.3004404.
[52] J. Berman. (2012). Candida albicans. Current Biology.22(16):R620-R622. DOI: 10.1126/scitranslmed.3004404.
[53] L. Zhang, X. Wang, R. Wang, X. Zheng. et al.(2017). Baicalin potentiates TRAILinduced apoptosis through p38 MAPK activation and intracellular reactive oxygen species production. Molecular Medicine Reports.16:8549-8555. DOI: 10.1126/scitranslmed.3004404.
[54] S. Yang, Y. Fu, X. Wu, Z. Zhou. et al.(2014). Baicalin prevents Candida albicans infections via increasing its apoptosis rate. Biochemical and Biophysical Research Communications.451(1):36-41. DOI: 10.1126/scitranslmed.3004404.
[55] M. G. Netea, L. A. B. Joosten, J. W. M. Van Der Meer, B.-J. Kullberg. et al.(2015). Immune defence against Candida fungal infections. Nature Reviews Immunology.15(10):630-642. DOI: 10.1126/scitranslmed.3004404.
[56] T. K. Ha, A. H. Hansen, S. Kol, H. F. Kildegaard. et al.(2017). Baicalein reduces oxidative stress in CHO cell cultures and improves recombinant antibody productivity. Biotechnology Journal. DOI: 10.1126/scitranslmed.3004404.
[57] Y. Iida, K.-B. Oh, M. Saito, H. Matsuoka. et al.(2000). In vitro synergism between nyasol, an active compound isolated from anemarrhena asphodeloides, and azole agents against Candida albicans. Planta Medica.66(5):435-438. DOI: 10.1126/scitranslmed.3004404.
[58] F. G. Costa, B. R. Da Silva Neto, R. L. Gonçalves, R. A. Da Silva. et al.(2015). Alkaloids as inhibitors of malate synthase from paracoccidioides spp.: Receptor-ligand interaction-based virtual screening and molecular docking studies, antifungal activity, and the adhesion process. Antimicrobial Agents and Chemotherapy.59(9):5581-5594. DOI: 10.1126/scitranslmed.3004404.
[59] M. C. Lorenz, G. R. Fink. (2001). The glyoxylate cycle is required for fungal virulence. Nature.412(6842):83-86. DOI: 10.1126/scitranslmed.3004404.
[60] A. R. Da Silva, J. B. De Andrade Neto, C. R. Da Silva, R. D. S. Campos. et al.(2016). Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrobial Agents and Chemotherapy.60(6):3551-3557. DOI: 10.1126/scitranslmed.3004404.
[61] M. Janeczko, M. Masłyk, K. Kubiński, H. Golczyk. et al.(2017). Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast.34(6):253-265. DOI: 10.1126/scitranslmed.3004404.
[62] M. Girardot, C. Imbert. (2016). Novel strategies against Candida biofilms: interest of synthetic compounds. Future Microbiology.11(1):69-79. DOI: 10.1126/scitranslmed.3004404.
[63] H. Guo, S. M. Xie, S. X. Li, Y. J. Song. et al.(2017). Involvement of mitochondrial aerobic respiratory activity in efflux-mediated resistance of C. albicans to fluconazole. Journal de Mycologie Médicale.27:339-344. DOI: 10.1126/scitranslmed.3004404.
[64] K. Kodar, S. Eising, A. A. Khan, S. Steiger. et al.(2015). The uptake of trehalose glycolipids by macrophages is independent of mincle. ChemBioChem.16(4):683-693. DOI: 10.1126/scitranslmed.3004404.
[65] M. Lazzeroni, A. Guerrieri-Gonzaga, S. Gandini, H. Johansson. et al.(2016). A presurgical study of oral silybin-phosphatidylcholine in patients with early breast cancer. Cancer Prevention Research.9(1):89-95. DOI: 10.1126/scitranslmed.3004404.
[66] S. A. Ahmed, M. M. V. Baig. (2014). Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi Journal of Biological Sciences.21(5):499-504. DOI: 10.1126/scitranslmed.3004404.
[67] J. A. Lecciones, J. W. Lee, E. E. Navarro, F. G. Witebsky. et al.(1992). Vascular catheter-associated fungemia in patients with cancer: analysis of 155 episodes. Clinical Infectious Diseases.14(4):875-883. DOI: 10.1126/scitranslmed.3004404.
[68] D. Wan, H. Ouyang. (2017). Baicalin induces apoptosis in human osteosarcoma cell through ROS-mediated mitochondrial pathway. Natural Product Research:1-5. DOI: 10.1126/scitranslmed.3004404.
[69] S. Giri, A. J. Kindo. (2012). A review of Candida species causing blood stream infection. Indian Journal of Medical Microbiology.30(3):270-278. DOI: 10.1126/scitranslmed.3004404.
[70] Y. Li, Z. Ye, W. Lai, J. Rao. et al.(2017). Activation of sirtuin 3 by silybin attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Frontiers in Pharmacology.8(178). DOI: 10.1126/scitranslmed.3004404.
[71] J. B. Anderson. (2005). Evolution of antifungal-drug resistance: mechanisms and pathogen fitness. Nature Reviews Microbiology.3(7):547-556. DOI: 10.1126/scitranslmed.3004404.
[72] L. Ostrosky-Zeichner, A. Casadevall, J. N. Galgiani, F. C. Odds. et al.(2010). An insight into the antifungal pipeline: selected new molecules and beyond. Nature Reviews Drug Discovery.9(9):719-727. DOI: 10.1126/scitranslmed.3004404.
[73] J. Ham, W. Lim, F. W. Bazer, G. Song. et al.(2018). Silibinin stimluates apoptosis by inducing generation of ROS and ER stress in human choriocarcinoma cells. Journal of Cellular Physiology.233(2):1638-1649. DOI: 10.1126/scitranslmed.3004404.
[74] M. Yordanov, P. Dimitrova, S. Patkar, L. Saso. et al.(2008). Inhibition of Candida albicans extracellular enzyme activity by selected natural substances and their application in Candida infection. Canadian Journal of Microbiology.54(6):435-440. DOI: 10.1126/scitranslmed.3004404.
[75] S.-J. Kim, Y.-J. Moon, S.-M. Lee. (2010). Protective effects of baicalin against ischemia/reperfusion injury in rat liver. Journal of Natural Products.73(12):2003-2008. DOI: 10.1126/scitranslmed.3004404.
[76] R. H. Pires, R. Lucarini, M. J. S. Mendes-Giannini. (2012). Effect of usnic acid on Candida orthopsilosis and C. parapsilosis. Antimicrobial Agents and Chemotherapy.56(1):595-597. DOI: 10.1126/scitranslmed.3004404.
[77] M. Gao, H. Wang, L. Zhu. (2016). Quercetin assists fluconazole to inhibit biofilm formations of fluconazole-resistant candida albicans in in vitro and in vivo antifungal managements of vulvovaginal candidiasis. Cellular Physiology and Biochemistry.40(3-4):727-742. DOI: 10.1126/scitranslmed.3004404.
[78] V. Y. Waisundara, A. Hsu, B. K. Tan, D. Huang. et al.(2009). Baicalin reduces mitochondrial damage in streptozotocin-induced diabetic Wistar rats. Diabetes/Metabolism Research and Reviews.25(7):671-677. DOI: 10.1126/scitranslmed.3004404.
[79] G. D. Brown, D. W. Denning, N. A. R. Gow, S. M. Levitz. et al.(2012). Hidden killers: human fungal infections. Science Translational Medicine.4(165). DOI: 10.1126/scitranslmed.3004404.
[80] M. S. A. Khan, I. Ahmad. (2012). Antibiofilm activity of certain phytocompounds and their synergy with fluconazole against biofilms. Journal of Antimicrobial Chemotherapy.67(3):618-621. DOI: 10.1126/scitranslmed.3004404.
[81] D. Kocevski, M. Du, J. Kan, C. Jing. et al.(2013). Antifungal effect of , , and essential oils and their components against population of Aspergillus species. Journal of Food Science.78(5):M731-M737. DOI: 10.1126/scitranslmed.3004404.
[82] F. C. Odds, A. J. P. Brown, N. A. R. Gow. (2003). Antifungal agents: Mechanisms of action. Trends in Microbiology.11(6):272-279. DOI: 10.1126/scitranslmed.3004404.
[83] G.-X. Wei, X. Xu, C. D. Wu. (2011). In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Archives of Oral Biolog.56(6):565-572. DOI: 10.1126/scitranslmed.3004404.
[84] T. Sultan, S. A. Ali. (2011). Psoralea corylifolia extracts stimulate cholinergic-like psoralen receptors of tadpole-tail melanophores, leading to skin darkening. Journal of Receptors and Signal Transduction.31(1):39-44. DOI: 10.1126/scitranslmed.3004404.
[85] A. Defontaine, J.-P. Bouchara, P. Declerk, C. Planchenault. et al.(1999). In-vitro resistance to azoles associated with mitochondrial DNA deficiency in Candida glabrata. Journal of Medical Microbiology.48(7):663-670. DOI: 10.1126/scitranslmed.3004404.
[86] R. Salmazi, G. Calixto, J. Bernegossi, M. Aparecido Dos. et al.(2015). A Curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis. International Journal of Nanomedicine.10:4815-4824. DOI: 10.1126/scitranslmed.3004404.
[87] L. S. Arias, A. C. B. Delbem, R. A. Fernandes, D. B. Barbosa. et al.(2016). Activity of tyrosol against single and mixed-species oral biofilms. Journal of Applied Microbiology.120(5):1240-1249. DOI: 10.1126/scitranslmed.3004404.
[88] D. Kobayashi, K. Kondo, N. Uehara, S. Otokozawa. et al.(2002). Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Antimicrobial Agents and Chemotherapy.46(10):3113-3117. DOI: 10.1126/scitranslmed.3004404.
[89] C. D. Lao, M. T. Ruffin, D. Normolle, D. D. Heath. et al.(2006). Dose escalation of a curcuminoid formulation. BMC Complementary and Alternative Medicine.6, article 10. DOI: 10.1126/scitranslmed.3004404.
[90] J. H. Hwang, I.-S. Hwang, Q.-H. Liu, E.-R. Woo. et al.(2012). (+)-Medioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans. Biochimie.94(8):1784-1793. DOI: 10.1126/scitranslmed.3004404.
[91] A. Deveau, D. A. Hogan. (2011). Linking quorum sensing regulation and biofilm formation by Candida albicans. Methods in Molecular Biology.692:219-233. DOI: 10.1126/scitranslmed.3004404.
[92] D. G. Yun, D. G. Lee. (2016). Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans. The International Journal of Biochemistry & Cell Biology.80:1-9. DOI: 10.1126/scitranslmed.3004404.
[93] M. A. S. Alem, M. D. Y. Oteef, T. H. Flowers, L. J. Douglas. et al.(2006). Production of tyrosol by biofilms and its role in quorum sensing and biofilm development. Eukaryotic Cell.5(10):1770-1779. DOI: 10.1126/scitranslmed.3004404.
[94] J. Schümann, J. Prockl, A. K. Kiemer, A. M. Vollmar. et al.(2003). Silibinin protects mice from T cell-dependent liver injury. Journal of Hepatology.39(3):333-340. DOI: 10.1126/scitranslmed.3004404.
[95] C. J. Nobile, J. E. Nett, A. D. Hernday, O. R. Homann. et al.(2009). Biofilm matrix regulation by Candida albicans Zap1. PLoS Biology.7(6). DOI: 10.1126/scitranslmed.3004404.
[96] R. Alonso-Monge, S. Carvaihlo, C. Nombela, E. Rial. et al.(2009). The Hog1 MAP kinase controls respiratory metabolism in the fungal pathogen Candida albicans. Microbiology.155(2):413-423. DOI: 10.1126/scitranslmed.3004404.
[97] C. G. Pierce, A. Srinivasan, P. Uppuluri, A. K. Ramasubramanian. et al.(2013). Antifungal therapy with an emphasis on biofilms. Current Opinion in Pharmacology.13(5):726-730. DOI: 10.1126/scitranslmed.3004404.
[98] M. Shahzad, L. Sherry, R. Rajendran, C. A. Edwards. et al.(2014). Utilising polyphenols for the clinical management of Candida albicans biofilms. International Journal of Antimicrobial Agents.44(3):269-273. DOI: 10.1126/scitranslmed.3004404.
[99] C. Limper, Y. Wang, S. Ruhl, Z. Wang. et al.(2013). Compounds isolated from Psoralea corylifolia seeds inhibit protein kinase activity and induce apoptotic cell death in mammalian cells. Journal of Pharmacy and Pharmacology.65(9):1393-1408. DOI: 10.1126/scitranslmed.3004404.
[100] J. V. Desai, A. P. Mitchell, D. R. Andes. (2014). Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harbor Perspectives in Medicine.4(10). DOI: 10.1126/scitranslmed.3004404.
[101] G. L. Semenza. (1999). Regulation of mammalian O homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology.15:551-578. DOI: 10.1126/scitranslmed.3004404.
[102] P. Uppuluri, J. Nett, J. Heitman, D. Andes. et al.(2008). Synergistic effect of calcineurin inhibitors and fluconazole against Candida albicans biofilms. Antimicrobial Agents and Chemotherapy.52(3):1127-1132. DOI: 10.1126/scitranslmed.3004404.
[103] T. Roemer, D. Xu, S. B. Singh, C. A. Parish. et al.(2011). Confronting the challenges of natural product-based antifungal discovery. Chemistry & Biology.18(2):148-164. DOI: 10.1126/scitranslmed.3004404.
[104] N. Khan, S. Shreaz, R. Bhatia, S. I. Ahmad. et al.(2012). Anticandidal activity of curcumin and methyl cinnamaldehyde. Fitoterapia.83(3):434-440. DOI: 10.1126/scitranslmed.3004404.
[105] W. Liang, A. Cai, G. Chen, H. Xi. et al.(2016). Shikonin induces mitochondria-mediated apoptosis and enhances chemotherapeutic sensitivity of gastric cancer through reactive oxygen species. Scientific Reports.6. DOI: 10.1126/scitranslmed.3004404.
[106] T. Bjarnsholt, O. Ciofu, S. Molin, M. Givskov. et al.(2013). Applying insights from biofilm biology to drug development—can a new approach be developed?. Nature Reviews Drug Discovery.12(10):791-808. DOI: 10.1126/scitranslmed.3004404.
[107] B. Scorneaux, D. Angulo, K. Borroto-Esoda, M. Ghannoum. et al.(2017). SCY-078 is fungicidal against Candida species in time-kill studies. Antimicrobial Agents and Chemotherapy.61(3). DOI: 10.1126/scitranslmed.3004404.
[108] S. Fanning, A. P. Mitchell. (2012). Fungal biofilms.. PLoS Pathogens.8(4):e1002585. DOI: 10.1126/scitranslmed.3004404.
[109] L. E. O'Donnell, E. Millhouse, L. Sherry, R. Kean. et al.(2015). Polymicrobial Candida biofilms: friends and foe in the oral cavity. FEMS Yeast Research.15(7). DOI: 10.1126/scitranslmed.3004404.
[110] M. G. Moloney. (2016). Natural products as a source for novel antibiotics. Trends in Pharmacological Sciences.37(8):689-701. DOI: 10.1126/scitranslmed.3004404.
[111] M. A. Ansari, Z. Fatima, K. Ahmad, S. Hameed. et al.(2017). Monoterpenoid perillyl alcohol impairs metabolic flexibility of Candida albicans by inhibiting glyoxylate cycle. Biochemical and Biophysical Research Communications. DOI: 10.1126/scitranslmed.3004404.
[112] J. Shao, Y. Cui, M. Zhang, T. Wang. et al.(2017). Synergistic in vitro activity of sodium houttuyfonate with fluconazole against clinical Candida albicans strains under planktonic growing conditions. Pharmaceutical Biology.55(1):355-359. DOI: 10.1126/scitranslmed.3004404.
[113] X. Tang, C. Zhang, J. Wei, Y. Fang. et al.(2016). Apoptosis is induced by shikonin through the mitochondrial signaling pathway. Molecular Medicine Reports.13(4):3668-3674. DOI: 10.1126/scitranslmed.3004404.
[114] J. Trujillo, L. F. Granados-Castro, C. Zazueta, A. C. Andérica-Romero. et al.(2014). Mitochondria as a target in the therapeutic properties of curcumin. Archiv der Pharmazie.347(12):873-884. DOI: 10.1126/scitranslmed.3004404.
[115] L. Duelund, A. Amiot, A. Fillon, O. G. Mouritsen. et al.(2012). Influence of the active compounds of Perilla frutescens leaves on lipid membranes. Journal of Natural Products.75(2):160-166. DOI: 10.1126/scitranslmed.3004404.
[116] W.-K. Huh, S.-O. Kang. (1999). Molecular cloning and functional expression of alternative oxidase from Candida albicans. Journal of Bacteriology.181(13):4098-4102. DOI: 10.1126/scitranslmed.3004404.
[117] H. Miao, L. Zhao, C. Li, Q. Shang. et al.(2012). Inhibitory effect of Shikonin on Candida albicans growth. Biological & Pharmaceutical Bulletin.35(11):1956-1963. DOI: 10.1126/scitranslmed.3004404.
[118] G. Ramage, S. N. Robertson, C. Williams. (2014). Strength in numbers: antifungal strategies against fungal biofilms. International Journal of Antimicrobial Agents.43(2):114-120. DOI: 10.1126/scitranslmed.3004404.
[119] M. Sharma, R. Manoharlal, N. Puri, R. Prasad. et al.(2010). Antifungal curcumin induces reactive oxygen species and triggers an early apoptosis but prevents hyphae development by targeting the global repressor TUP1 in Candida albicans. Bioscience Reports.30(6):391-404. DOI: 10.1126/scitranslmed.3004404.
[120] J. Ma, J. Li, K. S. Wang, C. Mi. et al.(2016). Perillyl alcohol efficiently scavenges activity of cellular ROS and inhibits the translational expression of hypoxia-inducible factor-1 via mTOR/4E-BP1 signaling pathways. International Immunopharmacology.39:1-9. DOI: 10.1126/scitranslmed.3004404.
[121] W.-K. Huh, S.-O. Kang. (2001). Characterization of the gene family encoding alternative oxidase from Candida albicans. Biochemical Journal.356(2):595-604. DOI: 10.1126/scitranslmed.3004404.
[122] M. Sharma, R. Manoharlal, A. S. Negi, R. Prasad. et al.(2010). Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Research.10(5):570-578. DOI: 10.1126/scitranslmed.3004404.
[123] B. N. Singh, D. K. Upreti, B. R. Singh, G. Pandey. et al.(2015). Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrobial Agents and Chemotherapy.59(4):2153-2168. DOI: 10.1126/scitranslmed.3004404.
[124] Y.-Y. Cao, Y.-B. Cao, Z. Xu, K. Ying. et al.(2005). cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrobial Agents and Chemotherapy.49(2):584-589. DOI: 10.1126/scitranslmed.3004404.
[125] S. Mou, Z. Zhou, Y. He, F. Liu. et al.(2017). Curcumin inhibits cell proliferation and promotes apoptosis of laryngeal cancer cells through Bcl-2 and PI3K/Akt, and by upregulating miR-15a. Oncology Letters.14:4937-4942. DOI: 10.1126/scitranslmed.3004404.
[126] B. J. Kullberg, M. C. Arendrup. (2015). Invasive candidiasis. The New England Journal of Medicine.373(15):1445-1456. DOI: 10.1126/scitranslmed.3004404.
[127] J. E. Nett, R. Zarnowski, J. Cabezas-Olcoz, E. G. Brooks. et al.(2015). Host contributions to construction of three device-associated Candida albicans biofilms. Infection and Immunity.83(12):4630-4638. DOI: 10.1126/scitranslmed.3004404.
[128] H. Tripathi, S. Luqman, A. Meena, F. Khan. et al.(2014). Genomic identification of potential targets unique to Candida albicans for the discovery of antifungal agents. Current Drug Targets.15(1):136-149. DOI: 10.1126/scitranslmed.3004404.
[129] G. Liu, K. Oettel, H. Bailey, L. Van Ummersen. et al.(2003). Phase II trial of perillyl alcohol (NSC 641066) administered daily in patients with metastatic androgen independent prostate cancer. Investigational New Drugs.21(3):367-372. DOI: 10.1126/scitranslmed.3004404.
[130] F. Ruy, A. E. Vercesi, A. J. Kowaltowski. (2006). Inhibition of specific electron transport pathways leads to oxidative stress and decreased Candida albicans proliferation. Journal of Bioenergetics and Biomembranes.38(2):129-135. DOI: 10.1126/scitranslmed.3004404.
[131] B. Hwang, J. Cho, I.-S. Hwang, H.-G. Jin. et al.(2011). Antifungal activity of lariciresinol derived from Sambucus williamsii and their membrane-active mechanisms in Candida albicans. Biochemical and Biophysical Research Communications.410(3):489-493. DOI: 10.1126/scitranslmed.3004404.
[132] M. A. Peralta, M. A. Da Silva, M. G. Ortega, J. L. Cabrera. et al.(2015). Antifungal activity of a prenylated flavonoid from Dalea elegans against Candida albicans biofilms. Phytomedicine.22(11):975-980. DOI: 10.1126/scitranslmed.3004404.
[133] R. H. Pires, L. B. Montanari, C. H. G. Martins, J. E. Zaia. et al.(2011). Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia.172(6):453-464. DOI: 10.1126/scitranslmed.3004404.
[134] S. S. W. Wong, L. P. Samaranayake, C. J. Seneviratne. (2014). In pursuit of the ideal antifungal agent for Candida infections: high-throughput screening of small molecules. Drug Discovery Therapy.19(11):1721-1730. DOI: 10.1126/scitranslmed.3004404.
[135] A. Davis-Hanna, A. E. Piispanen, L. I. Stateva, D. A. Hogan. et al.(2008). Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Molecular Microbiology.67(1):47-62. DOI: 10.1126/scitranslmed.3004404.
[136] L. P. Rosa, F. C. da Silva, M. S. Viana, G. A. Meira. et al.(2016). In vitro effectiveness of 455-nm blue LED to reduce the load of Staphylococcus aureus and Candida albicans biofilms in compact bone tissue. Lasers in Medical Science.31(1):27-32. DOI: 10.1126/scitranslmed.3004404.
[137] C. Messier, D. Grenier. (2011). Effect of licorice compounds licochalcone A, glabridin and glycyrrhizic acid on growth and virulence properties of Candida albicans. Mycoses.54(6):e801-e806. DOI: 10.1126/scitranslmed.3004404.
[138] C. Shu, L. Sun, W. Zhang. (2016). Thymol has antifungal activity against Candida albicans during infection and maintains the innate immune response required for function of the p38 MAPK signaling pathway in Caenorhabditis elegans. Immunologic Research.64(4):1013-1024. DOI: 10.1126/scitranslmed.3004404.
[139] M. Feldman, A. Al-Quntar, I. Polacheck, M. Friedman. et al.(2014). Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans. PLoS ONE.9(5). DOI: 10.1126/scitranslmed.3004404.
[140] S. C. Pemmaraju, P. A. Pruthi, R. Prasad, V. Pruthi. et al.(2013). Candida albicans biofilm inhibition by synergistic action of terpenes and fluconazole. Indian Journal of Experimental Biology (IJEB).51(11):1032-1037. DOI: 10.1126/scitranslmed.3004404.
[141] N. Robbins, P. Uppuluri, J. Nett, R. Rajendran. et al.(2011). Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathogens.7(9). DOI: 10.1126/scitranslmed.3004404.
[142] S.-H. Lim, T.-Y. Ha, J. Ahn, S. Kim. et al.(2011). Estrogenic activities of L. seed extracts and main constituents. Phytomedicine.18(5):425-430. DOI: 10.1126/scitranslmed.3004404.
[143] P. W.-K. Tsang, H. M. H. N. Bandara, W.-P. Fong. (2012). Purpurin suppresses Candida albicans Biofilm formation and hyphal development. PLoS ONE.7(11). DOI: 10.1126/scitranslmed.3004404.
[144] F. Shirazi, D. P. Kontoyiannis. (2015). Micafungin triggers caspase-dependent apoptosis in Candida albicans and Candida parapsilosis biofilms, including caspofungin non-susceptible isolates. Virulence.6(4):385-394. DOI: 10.1126/scitranslmed.3004404.
[145] S. Takahata, N. Kubota, N. Takei-Masuda, T. Yamada. et al.(2016). Mechanism of action of ME1111, a novel antifungal agent for topical treatment of onychomycosis. Antimicrobial Agents and Chemotherapy.60(2):873-880. DOI: 10.1126/scitranslmed.3004404.
[146] Y. Xu, Y. Wang, L. Yan, R.-M. Liang. et al.(2009). Proteomic analysis reveals a synergistic mechanism of fluconazole and berberine against fluconazole-resistant Candida albicans: endogenous ROS augmentation. Journal of Proteome Research.8(11):5296-5304. DOI: 10.1126/scitranslmed.3004404.
[147] H. Mahmoudvand, S. A. Ayatollahi Mousavi, A. Sepahvand, F. Sharififar. et al.(2014). Antifungal, antileishmanial, and cytotoxicity activities of various extracts of (berberidaceae) and its active principle berberine. ISRN Pharmacology.2014-6. DOI: 10.1126/scitranslmed.3004404.
[148] H. Carrasco, M. Raimondi, L. Svetaz, M. Di Liberto. et al.(2012). Antifungal activity of eugenol analogues. Influence of different substituents and studies on mechanism of action. Molecules.17(1):1002-1024. DOI: 10.1126/scitranslmed.3004404.
[149] K. P. Shirley, L. J. Windsor, G. J. Eckert, R. L. Gregory. et al.(2017). In vitro effects of extract, aucubin, and baicalein on biofilm formation, metabolic activity, and cell surface hydrophobicity. Journal of Prosthodontics.26(6):508-515. DOI: 10.1126/scitranslmed.3004404.
[150] J. Shareck, A. Nantel, P. Belhumeur. (2011). Conjugated linoleic acid inhibits hyphal growth in Candida albicans by modulating Ras1p cellular levels and downregulating TEC1 expression. Eukaryotic Cell.10(4):565-577. DOI: 10.1126/scitranslmed.3004404.
[151] L. He, H. Mo, S. Hadisusilo, A. A. Qureshi. et al.(1997). Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. Journal of Nutrition.127(5):668-674. DOI: 10.1126/scitranslmed.3004404.
[152] L. Sun, K. Liao, D. Wang. (2015). Effects of magnolol and honokiol on adhesion, yeast-hyphal transition, and formation of biofilm by candida albicans. PLoS ONE.10(2). DOI: 10.1126/scitranslmed.3004404.
[153] D. Araújo, M. Henriques, S. Silva. (2017). Portrait of candida species biofilm regulatory network genes. Trends in Microbiology.25(1):62-75. DOI: 10.1126/scitranslmed.3004404.
[154] A. Rašković, N. Pavlović, M. Kvrgić, J. Sudji. et al.(2015). Effects of pharmaceutical formulations containing thyme on carbon tetrachloride-induced liver injury in rats. BMC Complementary and Alternative Medicine.15(1, article no. 442). DOI: 10.1126/scitranslmed.3004404.
[155] D. Seleem, B. Benso, J. Noguti, V. Pardi. et al.(2016). In vitro and in vivo antifungal activity of lichochalcone-A against candida albicans biofilms. PLoS ONE.11(6). DOI: 10.1126/scitranslmed.3004404.
[156] F. Freire, P. P. de Barros, D. da Silva Ávila, G. N. B. Brito. et al.(2015). Evaluation of gene expression SAP5, LIP9, and PLB2 of Candida albicans biofilms after photodynamic inactivation. Lasers in Medical Science.30(5):1511-1518. DOI: 10.1126/scitranslmed.3004404.
[157] S. Dhamgaye, F. Devaux, P. Vandeputte, N. K. Khandelwal. et al.(2014). Molecular mechanisms of action of herbal antifungal alkaloid berberine, in Candida Albicans. PLoS ONE.9(8). DOI: 10.1126/scitranslmed.3004404.
[158] K. De Cremer, I. Staes, N. Delattin, B. P. A. Cammue. et al.(2015). Combinatorial drug approaches to tackle Candida albicans biofilms. Expert Review of Anti-Infective Therapy.13(8):973-984. DOI: 10.1126/scitranslmed.3004404.
[159] M. Henriques, J. Azeredo, R. Oliveira. (2006). Candida species adhesion to oral epithelium: factors involved and experimental methodology used. Critical Reviews in Microbiology.32(4):217-226. DOI: 10.1126/scitranslmed.3004404.
[160] D.-D. Li, Y. Xu, D.-Z. Zhang, H. Quan. et al.(2013). Fluconazole assists berberine to kill fluconazole-resistant. Antimicrobial Agents and Chemotherapy.57(12):6016-6027. DOI: 10.1126/scitranslmed.3004404.
[161] S. Okubo, T. Uto, A. Goto, H. Tanaka. et al.(2017). Berberine induces apoptotic cell death via activation of caspase-3 and -8 in HL-60 human leukemia cells: nuclear localization and structure–activity relationships. American Journal of Chinese Medicine.45(07):1497-1511. DOI: 10.1126/scitranslmed.3004404.
[162] S.-L. Zhu, L. Yan, Y.-X. Zhang, Z.-H. Jiang. et al.(2014). Berberine inhibits fluphenazine-induced up-regulation of CDR1 in Candida albicans. Biological & Pharmaceutical Bulletin.37(2):268-273. DOI: 10.1126/scitranslmed.3004404.
[163] P. A. de Castro, V. L. P. Bom, N. A. Brown, R. S. C. D. Almeida. et al.(2013). Identification of the cell targets important for propolis-induced cell death in. Fungal Genetics and Biology.60:74-86. DOI: 10.1126/scitranslmed.3004404.
[164] N. Guo, J. Liu, X. Wu, X. Bi. et al.(2009). Antifungal activity of thymol against clinical isolates of fluconazole-sensitive and -resistant Candida albicans. Journal of Medical Microbiology.58(8):1074-1079. DOI: 10.1126/scitranslmed.3004404.
[165] A. Rabes, S. Zimmermann, K. Reppe, R. Lang. et al.(2015). The C-type lectin receptor mincle binds to streptococcus pneumoniae but plays a limited role in the anti-pneumococcal innate immune response. PLoS ONE.10(2). DOI: 10.1126/scitranslmed.3004404.
浏览 131次
下载全文 24次
评分次数 0次
用户评分 0.0分
分享 19次