首页 » 文章 » 文章详细信息
Advances in High Energy Physics Volume 2017 ,2017-12-28
η Q Meson Photoproduction in Ultrarelativistic Heavy Ion Collisions
Research Article
Gong-Ming Yu 1 Gao-Gao Zhao 2 Zhen Bai 1 Yan-Bing Cai 2 Hai-Tao Yang 3 Jian-Song Wang 1
Show affiliations
DOI:10.1155/2017/2379319
Received 2017-08-10, accepted for publication 2017-12-07, Published 2017-12-07
PDF
摘要

The transverse momentum distributions for inclusive ηc,b meson described by gluon-gluon interactions from photoproduction processes in relativistic heavy ion collisions are calculated. We considered the color-singlet (CS) and color-octet (CO) components within the framework of Nonrelativistic Quantum Chromodynamics (NRQCD) in the production of heavy quarkonium. The phenomenological values of the matrix elements for the color-singlet and color-octet components give the main contribution to the production of heavy quarkonium from the gluon-gluon interaction caused by the emission of additional gluon in the initial state. The numerical results indicate that the contribution of photoproduction processes cannot be negligible for midrapidity in p-p and Pb-Pb collisions at the Large Hadron Collider (LHC) energies.

授权许可

Copyright © 2017 Gong-Ming Yu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

图表

The invariant cross section of large-pT  ηc meson production from gluon-gluon interaction at midrapidity in p-p collisions (s=7.0 TeV and s=14.0 TeV) and Pb-Pb collisions (s=2.76 TeV and s=5.5 TeV) at the LHC. The dashed line (red line) is for the initial gluon-gluon interaction (LO), the dotted line (blue line) for the semielastic hard photoproduction g-g processes (semi.), the dashed-dotted line (wine line) for the inelastic hard photoproduction g-g processes (inel.), and the solid line (black line) for the sum of the above processes.

The invariant cross section of large-pT  ηc meson production from gluon-gluon interaction at midrapidity in p-p collisions (s=7.0 TeV and s=14.0 TeV) and Pb-Pb collisions (s=2.76 TeV and s=5.5 TeV) at the LHC. The dashed line (red line) is for the initial gluon-gluon interaction (LO), the dotted line (blue line) for the semielastic hard photoproduction g-g processes (semi.), the dashed-dotted line (wine line) for the inelastic hard photoproduction g-g processes (inel.), and the solid line (black line) for the sum of the above processes.

The invariant cross section of large-pT  ηc meson production from gluon-gluon interaction at midrapidity in p-p collisions (s=7.0 TeV and s=14.0 TeV) and Pb-Pb collisions (s=2.76 TeV and s=5.5 TeV) at the LHC. The dashed line (red line) is for the initial gluon-gluon interaction (LO), the dotted line (blue line) for the semielastic hard photoproduction g-g processes (semi.), the dashed-dotted line (wine line) for the inelastic hard photoproduction g-g processes (inel.), and the solid line (black line) for the sum of the above processes.

The invariant cross section of large-pT  ηc meson production from gluon-gluon interaction at midrapidity in p-p collisions (s=7.0 TeV and s=14.0 TeV) and Pb-Pb collisions (s=2.76 TeV and s=5.5 TeV) at the LHC. The dashed line (red line) is for the initial gluon-gluon interaction (LO), the dotted line (blue line) for the semielastic hard photoproduction g-g processes (semi.), the dashed-dotted line (wine line) for the inelastic hard photoproduction g-g processes (inel.), and the solid line (black line) for the sum of the above processes.

The same as Figure 1 but for large-pT  ηb meson production from gluon-gluon interaction at midrapidity in p-p and Pb-Pb collisions at the LHC.

The same as Figure 1 but for large-pT  ηb meson production from gluon-gluon interaction at midrapidity in p-p and Pb-Pb collisions at the LHC.

The same as Figure 1 but for large-pT  ηb meson production from gluon-gluon interaction at midrapidity in p-p and Pb-Pb collisions at the LHC.

The same as Figure 1 but for large-pT  ηb meson production from gluon-gluon interaction at midrapidity in p-p and Pb-Pb collisions at the LHC.

通讯作者

Gong-Ming Yu.CAS Key Laboratory of High Precision Nuclear Spectroscopy and Center for Nuclear Matter Science, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China, cas.cn.ygmanan@163.com

推荐引用方式

Gong-Ming Yu,Gao-Gao Zhao,Zhen Bai,Yan-Bing Cai,Hai-Tao Yang,Jian-Song Wang. η Q Meson Photoproduction in Ultrarelativistic Heavy Ion Collisions. Advances in High Energy Physics ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Gluck, E. Reya, I. Schienbein. (2000). Erratum: Radiatively generated parton distributions of real and virtual photons. Physical Review D: Particles, Fields, Gravitation and Cosmology.62(1). DOI: 10.1088/0954-3899/41/8/087001.
[2] G. T. Bodwin, E. Braaten, G. P. Legage. (1995). Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium. Physical Review D: Particles, Fields, Gravitation and Cosmology.51(3):1125-1171. DOI: 10.1088/0954-3899/41/8/087001.
[3] Z. He, B. A. Kniehl. (2015). Complete Nonrelativistic-QCD Prediction for Prompt Double. Physical Review Letters.115(2). DOI: 10.1088/0954-3899/41/8/087001.
[4] H.-F. Zhang, Z. Sun, W.-L. Sang, R. Li. et al.(2015). Nature of isomerism in exotic sulfur isotopes. Physical Review Letters.114(3). DOI: 10.1088/0954-3899/41/8/087001.
[5] S. S. Biswal, K. Sridhar. (2012). Transverse momentum distributions of strange hadrons produced in nucleus–nucleus collisions at. Journal of Physics G: Nuclear and Particle Physics.39(2). DOI: 10.1088/0954-3899/41/8/087001.
[6] T. Song, K. C. Han, C. M. Ko. (2013). Effects of initial fluctuations on bottomonia suppression in relativistic heavy-ion collisions. Nuclear Physics A.897(141). DOI: 10.1088/0954-3899/41/8/087001.
[7] N. Armesto, A. H. Rezaeian. (2014). Exclusive vector meson production at high energies and gluon saturation. Physical Review D.90. DOI: 10.1088/0954-3899/41/8/087001.
[8] B. Chen, K. Zhou, P. Zhuang. (2012). Mean field effect on. Physical Review C: Nuclear Physics.86(3). DOI: 10.1088/0954-3899/41/8/087001.
[9] J.-X. Wang, H.-F. Zhang. (2015). Uncertainties in nuclear matrix elements for neutrinoless double-beta decay. Journal of Physics G: Nuclear and Particle Physics.42(3). DOI: 10.1088/0954-3899/41/8/087001.
[10] N. Baron, G. Baur. (1994). Physics at relativistic heavy-ion colliders. Physical Review C: Nuclear Physics.49(2):1127-1131. DOI: 10.1088/0954-3899/41/8/087001.
[11] S. P. Baranov, A. V. Lipatov, N. P. Zotov. (2012). Prompt. Physical Review D: Particles, Fields, Gravitation and Cosmology.85(1). DOI: 10.1088/0954-3899/41/8/087001.
[12] M. Drees, R. M. Godbole, M. Nowakowski, S. D. Rindani. et al.(1994). processes at high energy pp colliders. Physical Review D: Particles, Fields, Gravitation and Cosmology.50(3):2335-2338. DOI: 10.1088/0954-3899/41/8/087001.
[13] Z. Kang, J. Qiu, G. Sterman. (2012). Heavy Quarkonium Production and Polarization. Physical Review Letters.108(10). DOI: 10.1088/0954-3899/41/8/087001.
[14] A. Pineda. (2012). Collective phenomena in ultra-relativistic nuclear collisions: anisotropic flow and more. Progress in Particle and Nuclear Physics.67(2):541-546. DOI: 10.1088/0954-3899/41/8/087001.
[15] R. Aaij. (2015). LHCb collaboration. European Physical Journal C.75(311). DOI: 10.1088/0954-3899/41/8/087001.
[16] G. S. dos Santos, M. V. Machado. (2014). Exclusive photoproduction of quarkonium in proton-nucleus collisions at energies available at the CERN Large Hadron Collider. Physical Review C: Nuclear Physics.89(2). DOI: 10.1088/0954-3899/41/8/087001.
[17] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni. et al.(1998). NLO production and decay of quarkonium. Nuclear Physics B.514(1-2):245-309. DOI: 10.1088/0954-3899/41/8/087001.
[18] Z. Sun, X.-G. Wu, H. F. Zhang. (2015). Searching for a heavy Higgs boson in a Higgs-portal model. Physical Review D: Particles, Fields, Gravitation and Cosmology.92. DOI: 10.1088/0954-3899/41/8/087001.
[19] B. A. Kniehl, A. A. Penin, V. A. Smirnov, M. Steinhauser. et al.(2002). Deduction, ordering, and operations in quantum logic. Foundations of Physics.635(357). DOI: 10.1088/0954-3899/41/8/087001.
[20] B. Gong, L.-P. Wan, J.-X. Wang, H.-F. Zhang. et al.(2013). Polarization for prompt / and (2) production at the Tevatron and LHC. Physical Review Letters.110. DOI: 10.1088/0954-3899/41/8/087001.
[21] R. Aaij. (2013). LHCb collaboration. Journal of High Energy Physics.10(115). DOI: 10.1088/0954-3899/41/8/087001.
[22] C. R. Munz. (1996). Two-photon decays of mesons in a relativistic quark model. Nuclear Physics A.609(3):364-376. DOI: 10.1088/0954-3899/41/8/087001.
[23] J. D. Jackson. (1962). Classical Electrodynamics. DOI: 10.1088/0954-3899/41/8/087001.
[24] Z. He, B. A. Kniehl. (2016). Erratum: Relativistic corrections to prompt. Physical Review D: Particles, Fields, Gravitation and Cosmology.94(7). DOI: 10.1088/0954-3899/41/8/087001.
[25] M. Drees, D. Zeppenfeld. (1989). Production of supersymmetric particles in elastic ep collisions. Physical Review D: Particles, Fields, Gravitation and Cosmology.39(9):2536-2546. DOI: 10.1088/0954-3899/41/8/087001.
[26] R. Gastmans, W. Troost, T. T. Wu. (1987). Production of heavy quarkonia from gluons. Nuclear Physics B.291(C):731-745. DOI: 10.1088/0954-3899/41/8/087001.
[27] M. M. Meijer, J. Smith, W. L. van Neerven. (2008). Helicity amplitudes for charmonium production in hadron-hadron and photon-hadron collisions. Physical Review D: Particles, Fields, Gravitation and Cosmology.77(3). DOI: 10.1088/0954-3899/41/8/087001.
[28] H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao. et al.(2015). production at LHC and implications for the understanding of production. Physical Review Letters.114. DOI: 10.1088/0954-3899/41/8/087001.
[29] P. Hagler, R. Kirschner, A. Schäfer, L. Szymanowski. et al.(2001). Towards a Solution of the Charmonium Production Controversy:. Physical Review Letters.86(8):1446-1449. DOI: 10.1088/0954-3899/41/8/087001.
[30] S. P. Baranov. (2002). TeV astrophysics constraints on Planck scale Lorentz violation. Physical Review D: Particles, Fields, Gravitation and Cosmology.66. DOI: 10.1088/0954-3899/41/8/087001.
[31] P. Artoiseneta, E. Braaten. (2015). The carotid body and its relevance in pathophysiology. Experimental Physiology.100(2):121-123. DOI: 10.1088/0954-3899/41/8/087001.
[32] M. Butenschoen, Z. He, B. A. Kniehl. (2015). Physical Review Letters.114(9). DOI: 10.1088/0954-3899/41/8/087001.
[33] E. Papageorgiu. (1990). Two-photon physics with ultrahigh-energy heavy-ion beams. Physics Letters B.250(1-2):155-160. DOI: 10.1088/0954-3899/41/8/087001.
[34] Z. He, B. A. Kniehl. (2015). Relativistic corrections to. Physical Review D: Particles, Fields, Gravitation and Cosmology.92(1). DOI: 10.1088/0954-3899/41/8/087001.
[35] G. Chen, X. Wu, H. Fu, H. Han. et al.(2014). Photoproduction of heavy quarkonium at the ILC. Physical Review D: Particles, Fields, Gravitation and Cosmology.90(3). DOI: 10.1088/0954-3899/41/8/087001.
[36] E. Braaten, S. Fleming. (1995). Color-octet fragmentation and the ′ sssssurplus at the fermilab tevatron. Physical Review Letters.74(17):3327-3330. DOI: 10.1088/0954-3899/41/8/087001.
[37] V. P. Goncalves, W. K. Sauter. (2015). production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon. Physical Review D.91. DOI: 10.1088/0954-3899/41/8/087001.
[38] B. A. Kniehl, D. V. Vasin, V. A. Saleev. (2006). Charmonium production at high energy in the kT-factorization approach. Physical Review D: Particles, Fields, Gravitation and Cosmology.73(7). DOI: 10.1088/0954-3899/41/8/087001.
[39] V. P. Goncalves, G. G. da Silveira. (2015). Probing the photon flux in the diffractive quarkonium photoproduction at the LHC. Physical Review D.91. DOI: 10.1088/0954-3899/41/8/087001.
[40] R. M. Godbole, A. Misra, A. Mukherjee, V. S. Rawoot. et al.(2014). Transverse single spin asymmetries and charmonium production. Nuclear Physics B—Proceedings Supplements.251-252:56-61. DOI: 10.1088/0954-3899/41/8/087001.
[41] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu, G. Sterman. et al.(2015). Anomalous nuclear enhancement in deeply inelastic scattering and photoproduction. Physical Review D: Particles, Fields, Gravitation and Cosmology.91(3):1951-1971. DOI: 10.1088/0954-3899/41/8/087001.
[42] M. Klasen, B. A. Kniehl, L. N. Mihaila, M. Steinhauser. et al.(2002). Evidence for the Color-Octet Mechanism from CERN LEP2. Physical Review Letters.89(3). DOI: 10.1088/0954-3899/41/8/087001.
[43] S. P. Baranov. (2015). Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data. Physical Review D: Particles, Fields, Gravitation and Cosmology.91(7). DOI: 10.1088/0954-3899/41/8/087001.
[44] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu, G. Sterman. et al.(2014). Anomalous nuclear enhancement in deeply inelastic scattering and photoproduction. Physical Review D: Particles, Fields, Gravitation and Cosmology.90(3):1951-1971. DOI: 10.1088/0954-3899/41/8/087001.
[45] A. K. Likhoded, A. V. Luchinsky, S. V. Poslavsky. (2015). Production of. Modern Physics Letters A.30(07):1550032. DOI: 10.1088/0954-3899/41/8/087001.
[46] G. C. Nayak, M. X. Liu, F. Cooper. (2003). Color octet contribution to high. Physical Review D: Particles, Fields, Gravitation and Cosmology.68(3). DOI: 10.1088/0954-3899/41/8/087001.
[47] V. V. Anisovich, L. G. Dakhno, M. A. Matveev, V. A. Nikonov. et al.(2007). Quark-antiquark states and their radiative transitions in terms of the spectral integral equation: Bottomonia. Physics of Atomic Nuclei.70(1):63-92. DOI: 10.1088/0954-3899/41/8/087001.
[48] G. Aad. (2014). ATLAS collaboration. Journal of High Energy Physics.7(154). DOI: 10.1088/0954-3899/41/8/087001.
[49] G. T. Bodwin, H. S. Chung, U.-R. Kim, J. Lee. et al.(2014). Fragmentation contributions to production at the Tevatron and the LHC. Physical Review Letters.113. DOI: 10.1088/0954-3899/41/8/087001.
[50] A. K. Likhoded, A. V. Luchinsky, S. V. Poslavsky. (2012). Production of b mesons at the LHC. Physical Review D: Particles, Fields, Gravitation and Cosmology.86(7). DOI: 10.1088/0954-3899/41/8/087001.
[51] G.-L. Wang. (2009). Radiation of scalar oscillons in 2 and 3 dimensions. Physics Letters B.674(4-5):319-324. DOI: 10.1088/0954-3899/41/8/087001.
[52] G. Aad. (2015). ATLAS collaboration. Physical Review C.91(11). DOI: 10.1088/0954-3899/41/8/087001.
[53] G. T. Bodwin, H. S. Chung, U.-R. Kim, J. Lee. et al.(2015). Fragmentation contributions to J/ photoproduction at HERA. Physical Review D.92. DOI: 10.1088/0954-3899/41/8/087001.
[54] B. Y. Chen. (2016). Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Physical Review C: Nuclear Physics.93(4). DOI: 10.1088/0954-3899/41/8/087001.
[55] B.-Q. Li, K.-T. Chao. (2009). New agegraphic dark energy in Brans-Dicke theory. Communications in Theoretical Physics.52(4):761. DOI: 10.1088/0954-3899/41/8/087001.
[56] G. T. Bodwin, H. S. Chung, U.-R. Kim, J. Lee. et al.(2015). Quark fragmentation into spin-triplet S-wave quarkonium. Physical Review D.91. DOI: 10.1088/0954-3899/41/8/087001.
[57] D. Ebert, R. N. Faustov, V. O. Galkin. (2003). Two-photon decay rates of heavy quarkonia in the relativistic quark model. Modern Physics Letters A.18(9):601-607. DOI: 10.1088/0954-3899/41/8/087001.
[58] E. G. Ferreiro. (2014). Charmonium dissociation and recombination at LHC: Revisiting comovers. Physics Letters B.731(57). DOI: 10.1088/0954-3899/41/8/087001.
[59] G.-M. Yu, Y.-C. Yu, Y.-D. Li, J.-S. Wang. et al.(2017). Charmonium production in ultra-peripheral heavy ion collisions with two-photon processes. Nuclear Physics B.917:234. DOI: 10.1088/0954-3899/41/8/087001.
[60] H. Fujii, K. Watanabe. (2013). Heavy quark pair production in high-energy pA collisions: Quarkonium. Nuclear Physics A.915(1). DOI: 10.1088/0954-3899/41/8/087001.
[61] M. Gluck, E. Reya, A. Vogt. (1992). Parton distributions for high energy collisions. Zeitschrift für Physik C: Particles and Fields.53:127. DOI: 10.1088/0954-3899/41/8/087001.
[62] V. P. Goncalves, B. D. Moreira, F. S. Navarra. (2015). Exclusive photoproduction in hadronic collisions at CERN LHC energies. Physics Letters B.742(172). DOI: 10.1088/0954-3899/41/8/087001.
[63] B. Y. Chen. (2016). Forbidden nonunique decays and effective values of weak coupling constants. Physical Review C: Nuclear Physics.93(3). DOI: 10.1088/0954-3899/41/8/087001.
[64] G. Yu, Y. Cai, Y. Li, J. Wang. et al.(2017). Publisher's Note: Heavy quarkonium photoproduction in ultrarelativistic heavy ion collisions [Phys. Rev. C. Physical Review C: Nuclear Physics.95(6). DOI: 10.1088/0954-3899/41/8/087001.
[65] V. Khachatryan. (2015). CMS Collaboration. Physics Letters B.749(14). DOI: 10.1088/0954-3899/41/8/087001.
[66] X.-N. Wang, M. Gyulassy. (1991). Hijing: a Monte Carlo model for multiple jet production in pp, pA, and AA collisions. Physical Review D: Particles, Fields, Gravitation and Cosmology.44(11):3501-3516. DOI: 10.1088/0954-3899/41/8/087001.
[67] M. Klasen, B. A. Kniehl, L. N. Mihaila, M. Steinhauser. et al.(2003). Charmonium production in polarized high-energy collisions. Physical Review D: Particles, Fields, Gravitation and Cosmology.68(3). DOI: 10.1088/0954-3899/41/8/087001.
[68] T. Song. (2014). Charmonia formation in quark-gluon plasma. Physical Review C.89. DOI: 10.1088/0954-3899/41/8/087001.
[69] Y. Liu, C. Ko, T. Song. (2014). Hot medium effects on production in p+Pb collisions at. Physics Letters B.728:437-442. DOI: 10.1088/0954-3899/41/8/087001.
[70] R. Sharma, I. Vitev. (2013). High transverse momentum quarkonium production and dissociation in heavy ion collisions. Physical Review C: Nuclear Physics.87(4). DOI: 10.1088/0954-3899/41/8/087001.
[71] V. Khachatryan. (2015). CMS Collaboration. Physical Review Letters.114. DOI: 10.1088/0954-3899/41/8/087001.
[72] Y. Feng, B. Gong, L.-P. Wan, J.-X. Wang. et al.(2015). An updated study of Upsilon production and polarization at the Tevatron and LHC. Chinese Physics C.39. DOI: 10.1088/0954-3899/41/8/087001.
[73] B. Abelev. (2014). Upgrade of the ALICE Experiment: Letter Of Intent. Journal of Physics G: Nuclear and Particle Physics.738(361). DOI: 10.1088/0954-3899/41/8/087001.
[74] G. T. Bodwin, U.-R. Kim, J. Lee. (2012). Provider and patient correlates of provider decisions to recommend HCV treatment to HIV Co-infected patients. Journal of the International Association of Physicians in AIDS Care.11(4):245-251. DOI: 10.1088/0954-3899/41/8/087001.
[75] E. Braaten, S. Fleming, A. K. Leibovich. (2001). Nonrelativistic QCD analysis of bottomonium production at the Fermilab Tevatron. Physical Review D: Particles, Fields, Gravitation and Cosmology.63(9). DOI: 10.1088/0954-3899/41/8/087001.
[76] B. Abelev. (2014). Upgrade of the ALICE Experiment: Letter Of Intent. Journal of Physics G: Nuclear and Particle Physics.740(105). DOI: 10.1088/0954-3899/41/8/087001.
[77] Y.-Q. Ma, J.-W. Qiu, H. Zhang. (2014). Heavy quarkonium fragmentation functions from a heavy quark pair. I. S wave. Physical Review D: Particles, Fields, Gravitation and Cosmology.89. DOI: 10.1088/0954-3899/41/8/087001.
[78] Y.-Q. Ma, J.-W. Qiu, H. Zhang. (2014). Heavy quarkonium fragmentation functions from a heavy quark pair. Physical Review D: Particles, Fields, Gravitation and Cosmology.89. DOI: 10.1088/0954-3899/41/8/087001.
[79] C.-W. Hwang, R.-S. Guo. (2010). Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Physical Review D: Particles, Fields, Gravitation and Cosmology.82. DOI: 10.1088/0954-3899/41/8/087001.
[80] B. Y. Chen, J. X. Zhao. (2017). Bottomonium continuous production from unequilibrium bottom quarks in ultrarelativistic heavy ion collisions. Physics Letters B.772:819. DOI: 10.1088/0954-3899/41/8/087001.
[81] D. E. Kharzeev, E. M. Levin, K. Tuchin. (2014). Nuclear modification of the J/ transverse momentum distributions in high energy pA and AA collisions. Nuclear Physics A.924:47-64. DOI: 10.1088/0954-3899/41/8/087001.
[82] B. Y. Chen. (2017). Elliptic flow as a probe for the (2S) production mechanism in relativistic heavy ion collisions. Physical Review C.95. DOI: 10.1088/0954-3899/41/8/087001.
[83] J. Qiu, P. Sun, B. Xiao, F. Yuan. et al.(2014). Universal suppression of heavy quarkonium production in. Physical Review D: Particles, Fields, Gravitation and Cosmology.89(3). DOI: 10.1088/0954-3899/41/8/087001.
[84] B. A. Knieehl. (1991). Elastic ep scattering and the Weizsäcker-Williams approximation. Physics Letters B.254(267). DOI: 10.1088/0954-3899/41/8/087001.
[85] J. P. Ma, J. X. Wang, S. Zhao. (2014). The entropy of the noncommutative acoustic black hole based on generalized uncertainty principle. Physics Letters B.737(103):6-11. DOI: 10.1088/0954-3899/41/8/087001.
[86] S. Cho. (2015). Enhanced production of (2S) mesons in heavy ion collisions. Physical Review C.91. DOI: 10.1088/0954-3899/41/8/087001.
[87] L. S. Kisslinger, M. X. Liu, P. McGaughey. (2014). Heavy-quark-state production in. Physical Review C: Nuclear Physics.89(2). DOI: 10.1088/0954-3899/41/8/087001.
[88] S. Ganesh, M. Mishra. (2016). pQCD approach to charmonium regeneration in QGP at the LHC. Nuclear Physics A.947(38). DOI: 10.1088/0954-3899/41/8/087001.
[89] N. Brambilla, A. Pineda, J. Soto, A. Vairo. et al.(2000). Potential NRQCD: An effective theory for heavy quarkonium. Nuclear Physics B.566(1-2):275-310. DOI: 10.1088/0954-3899/41/8/087001.
[90] G.-M. Yu, Y.-D. Li. (2015). Photoproduction of dileptons, photons, and light vector mesons in ultrarelativistic heavy ion collisions. Physical Review C.91. DOI: 10.1088/0954-3899/41/8/087001.
[91] B. Y. Chen, T. C. Guo, Y. P. Liu, P. F. Zhuang. et al.(2017). Cold and hot nuclear matter effects on charmonium production in p+Pb collisions at LHC energy. Physics Letters.765(323). DOI: 10.1088/0954-3899/41/8/087001.
[92] M. Butenschoen, B. A. Kniehl. (2011). Reconciling production at HERA, RHIC, tevatron, and LHC with nonrelativistic QCD factorization at next-to-leading order. Physical Review Letters.106. DOI: 10.1088/0954-3899/41/8/087001.
文献评价指标
浏览 248次
下载全文 29次
评分次数 0次
用户评分 0.0分
分享 0次