首页 » 文章 » 文章详细信息
Advances in High Energy Physics Volume 2018 ,2018-01-10
The Quantum Description of BF Model in Superspace
Research Article
Manoj Kumar Dwivedi 1
Show affiliations
DOI:10.1155/2018/9291213
Received 2017-05-29, accepted for publication 2017-08-10, Published 2017-08-10
PDF
摘要

We consider the BRST symmetric four-dimensional BF theory, a topological theory, containing antisymmetric tensor fields in Landau gauge and extend the BRST symmetry by introducing a shift symmetry to it. Within this formulation, the antighost fields corresponding to shift symmetry coincide with antifields of standard field/antifield formulation. Furthermore, we provide a superspace description for the BF model possessing extended BRST and extended anti-BRST transformations.

授权许可

Copyright © 2018 Manoj Kumar Dwivedi. 2018
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

通讯作者

Manoj Kumar Dwivedi.Department of Physics, Banaras Hindu University, Varanasi 221005, India, bhu.ac.in.manojdwivedi84@gmail.com

推荐引用方式

Manoj Kumar Dwivedi. The Quantum Description of BF Model in Superspace. Advances in High Energy Physics ,Vol.2018(2018)

您觉得这篇文章对您有帮助吗?
分享和收藏
53

是否收藏?

参考文献
[1] M. Henneaux, C. Teitelboim. (1992). Quantization of Gauge Systems. DOI: 10.1016/0370-1573(91)90117-5.
[2] N. Maggiore, S. P. Sorella. (1992). Finiteness of the topological models in the Landau gauge. Nuclear Physics B.377(1-2):236-251. DOI: 10.1016/0370-1573(91)90117-5.
[3] K. Hayashi. (1973). The A1 and mesons from the violation of local Lorentz invariance. Physics Letters B.44(6):497-501. DOI: 10.1016/0370-1573(91)90117-5.
[4] S. Weinberg. (1996). The quantum theory of fields, Vol-II: Modern applications. DOI: 10.1016/0370-1573(91)90117-5.
[5] S. DESER. (1969). Lagrangian Forms of the Dynamical Theory of Currents. Physical Review A: Atomic, Molecular and Optical Physics.187(5):1931-1934. DOI: 10.1016/0370-1573(91)90117-5.
[6] C. Becchi, A. Rouet, R. Stora. (1976). Renormalization of gauge theories. Annals of Physics.98(2):287-321. DOI: 10.1016/0370-1573(91)90117-5.
[7] S. Upadhyay. (2013). BRST symmetry and Darboux transformations in Abelian 2-form gauge theory. EPL (Europhysics Letters).103. DOI: 10.1016/0370-1573(91)90117-5.
[8] C. Becchi, A. Rouet, R. Stora. (1975). Renormalization of the abelian Higgs-Kibble model. Communications in Mathematical Physics.42:127-162. DOI: 10.1016/0370-1573(91)90117-5.
[9] S. Upadhyay. (2014). Gaugeon formalism for perturbative quantum gravity. The European Physical Journal C.74(2, article 2737). DOI: 10.1016/0370-1573(91)90117-5.
[10] P. Yu. Moshin, S. Upadhyay, R. A. Castro. (2017). Finite BRST mapping in higher-derivative models. Brazilian Journal of Physics.47(4):411-418. DOI: 10.1016/0370-1573(91)90117-5.
[11] S. Upadhyay. (2017). Construction of a massive ABJM theory without Higgs superfields. Europhysics Letters.117:11001. DOI: 10.1016/0370-1573(91)90117-5.
[12] B. P. Mandal, S. K. Rai, S. Upadhyay. (2014). Finite nilpotent symmetry in Batalin-Vilkovisky formalism. EPL (Europhysics Letters).105. DOI: 10.1016/0370-1573(91)90117-5.
[13] S. Upadhyay. (2014). Generalised {BRST} symmetry and gaugeon formalism for perturbative quantum gravity: novel observation. Annals of Physics.344:290-300. DOI: 10.1016/0370-1573(91)90117-5.
[14] Y. Nambu. (1976). III. Magnetic and electric confinement of quarks. Physics Reports.23(3):250-253. DOI: 10.1016/0370-1573(91)90117-5.
[15] M. Blau, G. Thompson. (1991). Do metric independent classical actions lead to topological field theories?. Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology.255(4):535-542. DOI: 10.1016/0370-1573(91)90117-5.
[16] M. Kalb, P. Ramond. (1974). Classical direct interstring action. Physical Review D: Particles, Fields, Gravitation and Cosmology.9(8):2273-2284. DOI: 10.1016/0370-1573(91)90117-5.
[17] I. A. Batalin, G. A. Vilkovisky. (1983). Quantization of gauge theories with linearly dependent generators. Physical Review D: Particles, Fields, Gravitation and Cosmology.28(10):2567-2582. DOI: 10.1016/0370-1573(91)90117-5.
[18] C. Lucchesi, O. Piguet, S. Sorella. (1993). Renormalization and finiteness of topological theories. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems.395(1-2):325-353. DOI: 10.1016/0370-1573(91)90117-5.
[19] J. Zinn-Justin. (1975). Renormalization of Gauge Theories. DOI: 10.1016/0370-1573(91)90117-5.
[20] S. Upadhyay, P. K. Panigrahi. (2017). Quantum gauge freedom in very special relativity. Nuclear Physics B.915:168-183. DOI: 10.1016/0370-1573(91)90117-5.
[21] D. Birmingham, M. Blau, M. Rakowski, G. Thompson. et al.(1991). Topological field theory. Physics Reports.209(4-5):129-340. DOI: 10.1016/0370-1573(91)90117-5.
[22] M. Faizal, S. Upadhyay. (2014). Spontaneous breaking of the BRST symmetry in the ABJM theory. Physics Letters B.736:288-292. DOI: 10.1016/0370-1573(91)90117-5.
[23] L. Bonora, M. Tonin. (1981). Superfield formulation of extended BRS symmetry. Physics Letters B.98(1-2):48-50. DOI: 10.1016/0370-1573(91)90117-5.
[24] S. Upadhyay, D. Das. (2014). ABJM theory in Batalin–Vilkovisky formulation. Physics Letters B.733:63-68. DOI: 10.1016/0370-1573(91)90117-5.
[25] S. Upadhyay, B. Paul. (2016). BRST symmetry for Regge–Teitelboim-based minisuperspacemodels. The European Physical Journal C.76, article 394. DOI: 10.1016/0370-1573(91)90117-5.
[26] S. Upadhyay, M. K. Dwivedi, B. P. Mandal. (2013). The noncovariant gauges in 3-form theories. International Journal of Modern Physics A.28(10)-11. DOI: 10.1016/0370-1573(91)90117-5.
[27] S. Upadhyay. (2013). Aspects of finite field-dependent symmetry in SU (2) Cho–Faddeev–Niemi decomposition. Physics Letters B.727:293-297. DOI: 10.1016/0370-1573(91)90117-5.
[28] S. Upadhyay, P. A. Ganai. (2016). Finite field-dependent symmetry in the Thirring model. Progress of Theoretical and Experimental Physics.1. DOI: 10.1016/0370-1573(91)90117-5.
[29] I. A. Batalin, G. A. Vilkovisky. (1981). Gauge algebra and quantization. Physics Letters B.102(1):27-31. DOI: 10.1016/0370-1573(91)90117-5.
[30] V. I. Ogievetsky, I. V. Polubarinov. Yadernaya fizika.4(68):210. DOI: 10.1016/0370-1573(91)90117-5.
[31] N. Maggiore, S. P. Sorella. (1993). Perturbation theory for antisymmetric tensor fields in four dimensions. International Journal of Modern Physics A.8(5):929-945. DOI: 10.1016/0370-1573(91)90117-5.
[32] S. Upadhyay, A. Reshetnyak, B. P. Mandal. (2016). Comments on interactions in the SUSY models. The European Physical Journal C.76(7, article no. 391). DOI: 10.1016/0370-1573(91)90117-5.
[33] S. Upadhyay, B. P. Mandal. (2012). Relating Gribov-Zwanziger and Yang-Mills theories in Batalin-Vilkovisky formalism. AIP Conference Proceedings.1444:213. DOI: 10.1016/0370-1573(91)90117-5.
[34] S. Upadhyay, B. P. Mandal. (2012). Field dependent nilpotent symmetry for gauge theories. The European Physical Journal C.72(7, article 2065). DOI: 10.1016/0370-1573(91)90117-5.
[35] E. Guadagnini, M. Maggiore, S. P. Sorella. (1990). Supersymmetry of the three-dimensional Einstein-Hilbert gravity in the Landau gauge. Physics Letters B.247(4):543-548. DOI: 10.1016/0370-1573(91)90117-5.
[36] J. Alfaro, P. H. Damgaard. (1989). Schwinger-Dyson equations as supersymmetric ward identities. Physics Letters B.222(3-4):425-428. DOI: 10.1016/0370-1573(91)90117-5.
[37] S. Upadhyay, B. P. Mandal. (2015). Generalized {BRST} symmetry for arbitrary spin conformal field theory. Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology.744:231-236. DOI: 10.1016/0370-1573(91)90117-5.
[38] J. Alfaro, P. H. Damgaard, J. Latorre, D. Montano. et al.(1989). On the BRST invariance of field deformations. Physics Letters B.233(1-2):153-157. DOI: 10.1016/0370-1573(91)90117-5.
[39] S. Upadhyay. (2016). Super-group field cosmology in Batalin-Vilkovisky formulation. International Journal of Theoretical Physics.55(9):4005-4015. DOI: 10.1016/0370-1573(91)90117-5.
[40] S. Upadhyay, M. Oksanen, R. Bufalo. (2017). BRST Quantization of Unimodular Gravity. Brazilian Journal of Physics.47(3):350-365. DOI: 10.1016/0370-1573(91)90117-5.
[41] S. Upadhyay. (2015). Field-dependent symmetries in Friedmann-Robertson-Walker models. Annals of Physics.356:299-305. DOI: 10.1016/0370-1573(91)90117-5.
[42] J. Alfaro, P. H. Damgaard. (1993). Origin of antifields in the Batalin-Vilkovisky Lagrangian formalism. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems.404(3):751-793. DOI: 10.1016/0370-1573(91)90117-5.
[43] S. Upadhyay. (2015). Nilpotent symmetries in supergroup field cosmology. Modern Physics Letters A.30(18):1550072. DOI: 10.1016/0370-1573(91)90117-5.
[44] S. Upadhyay. (2015). The conformal gauge to the derivative gauge for worldsheet gravity. Physics Letters B.740:341-344. DOI: 10.1016/0370-1573(91)90117-5.
[45] S. Upadhyay, B. P. Mandal. (2010). Generalized {BRST} transformation in Abelian rank-2 antisymmetric tensor field theory. Modern Physics Letters A.25(40):3347-3362. DOI: 10.1016/0370-1573(91)90117-5.
[46] E. Witten. (1988). 2 + 1 dimensional gravity as an exactly soluble system. Nuclear Physics B.311(1):46-78. DOI: 10.1016/0370-1573(91)90117-5.
[47] D. Z. Freedman, P. K. Townsend. (1981). Antisymmetric tensor gauge theories and non-linear -models. Nuclear Physics B.177(2):282-296. DOI: 10.1016/0370-1573(91)90117-5.
[48] M. Blau, G. Thompson. (1991). Topological gauge theories of antisymmetric tensor fields. Annals of Physics.205(1):130-172. DOI: 10.1016/0370-1573(91)90117-5.
[49] S. Upadhyay. (2013). = 1 super-Chern-Simons theory in Batalin-Vilkovisky formulation. EPL (Europhysics Letters).104. DOI: 10.1016/0370-1573(91)90117-5.
[50] A. Hebecker, A. K. Knochel, T. Weigand. (2012). A shift symmetry in the Higgs sector: experimental hints and stringy realizations. Journal of High Energy Physics.2012(6, article 93). DOI: 10.1016/0370-1573(91)90117-5.
[51] G. T. Horowitz, M. Srednicki. (1990). A quantum field theoretic description of linking numbers and their generalization. Communications in Mathematical Physics.130(1):83-94. DOI: 10.1016/0370-1573(91)90117-5.
[52] S. Upadhyay, M. B. Shah, P. A. Ganai. (2017). Lorentz violating p-form gauge theories in superspace. The European Physical Journal C.77(3). DOI: 10.1016/0370-1573(91)90117-5.
[53] S. Upadhyay. (2016). Ward and Nielsen identities for ABJM theory in = 1 superspace. International Journal of Modern Physics A.31. DOI: 10.1016/0370-1573(91)90117-5.
[54] S. Upadhyay. (2015). A superspace description of Friedmann–Robertson–Walker models. Progress of Theoretical and Experimental Physics.2015(9). DOI: 10.1016/0370-1573(91)90117-5.
[55] M. Sharif, Z. Yousaf. (2015). Stability of regular energy density in Palatini gravity. The European Physical Journal C.75:58. DOI: 10.1016/0370-1573(91)90117-5.
[56] S. Upadhyay. (2014). Finite field-dependent symmetries in perturbative quantum gravity. Annals of Physics.340:110-118. DOI: 10.1016/0370-1573(91)90117-5.
[57] S. Upadhyay. (2016). A mass-deformed {BLG} theory in Gribov-Zwanziger framework. International Journal of Modern Physics A.31(26)-11. DOI: 10.1016/0370-1573(91)90117-5.
[58] S. Upadhyay, B. P. Mandal. (2012). BV formulation of higher form gauge theories in a superspace. The European Physical Journal C.72(7, article 2059). DOI: 10.1016/0370-1573(91)90117-5.
[59] S. Upadhyay. Finite field dependent BRST transformations and its applications to gauge field theories. . DOI: 10.1016/0370-1573(91)90117-5.
[60] N. R. F. Braga, A. Das. (1995). A superspace formulation of the BV action. Nuclear Physics B.442(3):655-668. DOI: 10.1016/0370-1573(91)90117-5.
[61] S. Upadhyay. (2015). Ward identities and gauge flow for M-theory in superspace. Physical Review D: Particles, Fields, Gravitation and Cosmology.92(6)-7. DOI: 10.1016/0370-1573(91)90117-5.
[62] L. R. Ribeiro, E. Passos, C. Furtado, J. R. Nascimento. et al.(2015). Geometric phases modified by a Lorentz-symmetry violation background. International Journal of Modern Physics A.30(14). DOI: 10.1016/0370-1573(91)90117-5.
[63] S. Upadhyay, M. K. Dwivedi, B. P. Mandal. (2015). A superspace description of Chern-Simons theory in Batalin-Vilkovisky formulation. International Journal of Theoretical Physics.54(6):2076-2086. DOI: 10.1016/0370-1573(91)90117-5.
[64] P. Brax, J. Martin. (2005). Shift symmetry and inflation in supergravity. Physical Review D: Particles, Fields, Gravitation and Cosmology.72(2)-24. DOI: 10.1016/0370-1573(91)90117-5.
[65] G. T. Horowitz. (1989). Exactly soluble diffeomorphism invariant theories. Communications in Mathematical Physics.125(3):417-437. DOI: 10.1016/0370-1573(91)90117-5.
[66] S. Upadhyay. (2013). Perturbative quantum gravity in Batalin-Vilkovisky formalism. Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology.723(4-5):470-474. DOI: 10.1016/0370-1573(91)90117-5.
文献评价指标
浏览 319次
下载全文 49次
评分次数 1次
用户评分 5.0分
分享 53次