首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2017 ,2017-11-20
Study on the Variation of Terrestrial Water Storage and the Identification of Its Relationship with Hydrological Cycle Factors in the Tarim River Basin, China
Research Article
Peng Yang 1 , 2 Jun Xia 1 , 3 Chesheng Zhan 1 Yongyong Zhang 1 Jie Chen 3
Show affiliations
DOI:10.1155/2017/5086854
Received 2017-06-07, accepted for publication 2017-10-22, Published 2017-10-22
PDF
摘要

The terrestrial water storage anomalies (TWSAs) in the Tarim River Basin (TRB) were investigated and the related factors of water variations in the mountain areas were analyzed based on Gravity Recovery and Climate Experiment (GRACE) data, in situ river discharge, and precipitation during the period of 2002–2015. The results showed that three obvious flood events in 2005, 2006, and 2010 resulted in significant water surplus, although TWSA decreased in the TRB during 2002–2015. However, while the significant water deficits in 2004, 2009, and 2011 were associated with obvious negative river discharge anomalies at the hydrological stations, the significant water deficits were not well consistent with the negative anomalies of precipitation. While the river discharge behaved with low correlations with TWSA, linear relationships between TWSA and climate indices were insignificant in the TRB from 2002 to 2015. The closest relationship was found between TWSA and Pacific Decadal Oscillation (PDO), with correlations of -0.56 and 0.58 during January 2010–December 2015 and during January 2006–December 2009, respectively. Meanwhile, the correlation coefficient between TWSA and El Niño-Southern Oscillation (ENSO) index in the period of April 2002–December 2005 was -0.25, which reached the significant level (p<0.05).

授权许可

Copyright © 2017 Peng Yang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Jun Xia.Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, cas.cn;State Key Laboratory of Water Resources & Hydropower Engineering Sciences, Wuhan University, Wuhan 430000, China, whu.edu.cn.xiaj@igsnrr.ac.cn

推荐引用方式

Peng Yang,Jun Xia,Chesheng Zhan,Yongyong Zhang,Jie Chen. Study on the Variation of Terrestrial Water Storage and the Identification of Its Relationship with Hydrological Cycle Factors in the Tarim River Basin, China. Advances in Meteorology ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
10

是否收藏?

参考文献
[1] P. Yang, Y. Chen. (2015). An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, central Asia. Quaternary International.358:106-112. DOI: 10.1007/s12665-016-5385-z.
[2] Y. Morishita, K. Heki. (2008). Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE. Earth and Planetary Science Letters.272(3-4):677-682. DOI: 10.1007/s12665-016-5385-z.
[3] Y.-N. Chen, W.-H. Li, C.-C. Xu, X.-M. Hao. et al.(2007). Effects of climate change on water resources in Tarim River Basin, Northwest China. Journal of Environmental Sciences.19(4):488-493. DOI: 10.1007/s12665-016-5385-z.
[4] Y. Chen, W. Li, H. Deng, G. Fang. et al.(2016). Changes in Central Asia’s Water Tower: past, present and future. Scientific Reports.6(1). DOI: 10.1007/s12665-016-5385-z.
[5] Z. Zhang, B. F. Chao, J. Chen, C. R. Wilson. et al.(2015). Terrestrial water storage anomalies of yangtze river basin droughts observed by GRACE and connections with ENSO. Global and Planetary Change.126:35-45. DOI: 10.1007/s12665-016-5385-z.
[6] T. C. Peterson, P. A. Stott, S. Herring. (2012). Explaining extreme events of 2011 from a climate perspective. Bulletin of the American Meteorological Society.93(7):1041-1067. DOI: 10.1007/s12665-016-5385-z.
[7] P. Yang, Y. N. Chen, W. H. Li, H. J. Wang. et al.(2015). Analysis of changes in runoff and drying in the Tarim River from 2003 to 2012. Resources Science.37(3):485-493. DOI: 10.1007/s12665-016-5385-z.
[8] H. Wang, Y. Chen, Y. Pan, W. Li. et al.(2015). Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. Journal of Hydrology.523:283-296. DOI: 10.1007/s12665-016-5385-z.
[9] Y. Cao, Z. Nan, G. Cheng. (2015). GRACE gravity satellite observations of terrestrial water storage changes for drought characterization in the arid land of northwestern China. Remote Sensing.7(1):1021-1047. DOI: 10.1007/s12665-016-5385-z.
[10] W. Feng, M. Zhong, J.-M. Lemoine, R. Biancale. et al.(2013). Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resources Research.49(4):2110-2118. DOI: 10.1007/s12665-016-5385-z.
[11] M. Rodell, P. R. Houser, U. Jambor, J. Gottschalck. et al.(2004). The global land data assimilation system. Bulletin of the American Meteorological Society.85(3):381-394. DOI: 10.1007/s12665-016-5385-z.
[12] D. She, A. K. Mishra, J. Xia, L. Zhang. et al.(2016). Wet and dry spell analysis using copulas. International Journal of Climatology.36(1):476-491. DOI: 10.1007/s12665-016-5385-z.
[13] J. Wahr, S. Swenson, V. Zlotnicki, I. Velicogna. et al.(2004). Time-variable gravity from GRACE: first results. Geophysical Research Letters.31(11). DOI: 10.1007/s12665-016-5385-z.
[14] A. F. Van Loon. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water.2(4):359-392. DOI: 10.1007/s12665-016-5385-z.
[15] A. Dai, K. E. Trenberth, T. Qian. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology.5(6):1117-1130. DOI: 10.1007/s12665-016-5385-z.
[16] A. AghaKouchak, A. Farahmand, F. S. Melton, J. Teixeira. et al.(2015). Remote sensing of drought: progress, challenges and opportunities. Reviews of Geophysics.53(2):452-480. DOI: 10.1007/s12665-016-5385-z.
[17] V. Humphrey, L. Gudmundsson, S. I. Seneviratne. (2016). Assessing Global Water Storage Variability from GRACE: trends, seasonal cycle, subseasonal anomalies and extremes. Surveys in Geophysics.37(2):357-395. DOI: 10.1007/s12665-016-5385-z.
[18] B. E. Jiménez Cisneros. (2014). Freshwater resources. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change:229-269. DOI: 10.1007/s12665-016-5385-z.
[19] J. S. Famiglietti. (2014). The global groundwater crisis. Nature Climate Change.4(11):945-948. DOI: 10.1007/s12665-016-5385-z.
[20] B. Li, Y. Chen, Z. Chen, H. Xiong. et al.(2016). Why does precipitation in northwest China show a significant increasing trend from 1960 to 2010?. Atmospheric Research.167:275-284. DOI: 10.1007/s12665-016-5385-z.
[21] Y. Chen, Z. Li, W. Li, H. Deng. et al.(2016). Water and ecological security: dealing with hydroclimatic challenges at the heart of China’s Silk Road. Environmental Earth Sciences.75(10, article no. 881). DOI: 10.1007/s12665-016-5385-z.
[22] I. Nalbantis, G. Tsakiris. (2009). Assessment of hydrological drought revisited. Water Resources Management.23(5):881-897. DOI: 10.1007/s12665-016-5385-z.
[23] B. D. Tapley, S. Bettadpur, J. C. Ries, P. F. Thompson. et al.(2004). GRACE measurements of mass variability in the Earth system. Science.305(5683):503-505. DOI: 10.1007/s12665-016-5385-z.
[24] Z. Liu, P. Zhou, F. Zhang, X. Liu. et al.(2013). Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China. Agricultural and Forest Meteorology.182-183:101-108. DOI: 10.1007/s12665-016-5385-z.
[25] T. Yao, L. Thompson, W. Yang, W. Yu. et al.(2012). Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nature Climate Change.2(9):663-667. DOI: 10.1007/s12665-016-5385-z.
[26] Y. He, T.-B. Yang, Q. Ji, J. Chen. et al.(2015). Glacier variation in response to climate change in Chinese Tianshan Mountains from 1989 to 2012. Journal of Mountain Science.12(5):1189-1202. DOI: 10.1007/s12665-016-5385-z.
[27] D. Long, B. R. Scanlon, L. Longuevergne, A. Y. Sun. et al.(2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters.40(13):3395-3401. DOI: 10.1007/s12665-016-5385-z.
[28] B. Wouters, J. A. Bonin, D. P. Chambers, R. E. M. Riva. et al.(2014). GRACE, time-varying gravity, Earth system dynamics and climate change. Reports on Progress in Physics.77(11). DOI: 10.1007/s12665-016-5385-z.
[29] J. Wahr, M. Molenaar, F. Bryan. (1998). Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE. Journal of Geophysical Research: Solid Earth.103(12):30205-30229. DOI: 10.1007/s12665-016-5385-z.
[30] Y. Yan, Y. Qi, W. Zhou. (2012). Variability of tropical cyclone occurrence date in the South China Sea and its relationship with SST warming. Dynamics of Atmospheres and Oceans.55-56:45-59. DOI: 10.1007/s12665-016-5385-z.
[31] Z. Chen, Y. Chen, W. Li. (2012). Response of runoff to change of atmospheric 0°C level height in summer in arid region of Northwest China. Science China Earth Sciences.55(9):1533-1544. DOI: 10.1007/s12665-016-5385-z.
[32] H. Wang, Y. Chen, W. Li. (2014). Hydrological extreme variability in the headwater of Tarim River: Links with atmospheric teleconnection and regional climate. Stochastic Environmental Research and Risk Assessment.28(2):443-453. DOI: 10.1007/s12665-016-5385-z.
[33] J. S. Famiglietti, M. Rodell. (2013). Water in the balance. Science.340(6138):1300-1301. DOI: 10.1007/s12665-016-5385-z.
[34] C. Sakumura, S. Bettadpur, H. Save, C. McCullough. et al.(2016). High-frequency terrestrial water storage signal capture via a regularized sliding window mascon product from GRACE. Journal of Geophysical Research: Solid Earth.121(5):4014-4030. DOI: 10.1007/s12665-016-5385-z.
[35] J. Xu, W. Li, M. Ji, F. Lu. et al.(2010). A comprehensive approach to characterization of the nonlinearity of runoff in the headwaters of the Tarim River, western China. Hydrological Processes.24(2):136-146. DOI: 10.1007/s12665-016-5385-z.
[36] W. Zhang, F.-F. Jin, M. F. Stuecker, A. T. Wittenberg. et al.(2016). Unraveling El Niño's impact on the East Asian Monsoon and Yangtze River summer flooding. Geophysical Research Letters.43(21):11-382. DOI: 10.1007/s12665-016-5385-z.
[37] A. C. Thomas, J. T. Reager, J. S. Famiglietti, M. Rodell. et al.(2014). A GRACE-based water storage deficit approach for hydrological drought characterization. Geophysical Research Letters.41(5):1537-1545. DOI: 10.1007/s12665-016-5385-z.
[38] B. A. Shafer, L. E. Dezman. Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. :164-175. DOI: 10.1007/s12665-016-5385-z.
[39] Z. Liu, L. Menzel, C. Dong, R. Fang. et al.(2016). Temporal dynamics and spatial patterns of drought and the relation to ENSO: a case study in Northwest China. International Journal of Climatology.36(8):2886-2898. DOI: 10.1007/s12665-016-5385-z.
[40] H. Wang, Y. Chen, W. Li. (2015). Characteristics in streamflow and extremes in the Tarim River, China: Trends, distribution and climate linkage. International Journal of Climatology.35(5):761-776. DOI: 10.1007/s12665-016-5385-z.
[41] Z. Li, Z. Hao, X. Shi, S. J. Déry. et al.(2016). An agricultural drought index to incorporate the irrigation process and reservoir operations: A case study in the Tarim River Basin. Global and Planetary Change.143:10-20. DOI: 10.1007/s12665-016-5385-z.
[42] J. Wahr. (2015). Time-variable gravity from satellites. Treatise on Geophysics:193-213. DOI: 10.1007/s12665-016-5385-z.
[43] K. Xu, D. Yang, H. Yang, Z. Li. et al.(2015). Spatio-temporal variation of drought in China during 1961–2012: a climatic perspective. Journal of Hydrology.526:253-264. DOI: 10.1007/s12665-016-5385-z.
[44] Q. Zhang, P. Sun, J. Li, M. Xiao. et al.(2015). Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China. Theoretical and Applied Climatology.121(1-2):337-347. DOI: 10.1007/s12665-016-5385-z.
[45] P. Zhai, X. Zhang, H. Wan, X. Pan. et al.(2005). Trends in total precipitation and frequency of daily precipitation extremes over China. Journal of Climate.18(7):1096-1108. DOI: 10.1007/s12665-016-5385-z.
[46] P. Li, H. Qian, K. W. Howard, J. Wu. et al.(2015). Building a new and sustainable “Silk Road economic belt”. Environmental Earth Sciences.74(10):7267-7270. DOI: 10.1007/s12665-016-5385-z.
[47] R. D. Koster, P. A. Dirmeyer, Z. C. Guo, G. Bonan. et al.(2004). Regions of strong coupling between soil moisture and precipitation. Science.305(5687):1138-1140. DOI: 10.1007/s12665-016-5385-z.
[48] Z. Li, Y. Chen, Y. Wang, W. Li. et al.(2016). Drought promoted the disappearance of civilizations along the ancient Silk Road. Environmental Earth Sciences.75(14, article no. 1116). DOI: 10.1007/s12665-016-5385-z.
文献评价指标
浏览 214次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 10次