首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2017 ,2017-10-18
(2 + 1)-Dimensional Coupled Model for Envelope Rossby Solitary Waves and Its Solutions as well as Chirp Effect
Research Article
Xin Chen 1 Hongwei Yang 1 , 2 Min Guo 1 Baoshu Yin 3 , 4
Show affiliations
DOI:10.1155/2017/1378740
Received 2017-06-22, accepted for publication 2017-08-24, Published 2017-08-24
PDF
摘要

Using the method of multiple scales and perturbation method, a set of coupled models describing the envelope Rossby solitary waves in (2+1)-dimensional condition are obtained, also can be called coupled NLS (CNLS) equations. Following this, based on trial function method, the solutions of the NLS equation are deduced. Moreover, the modulation instability of coupled envelope Rossby waves is studied. We can find that the stable feature of coupled envelope Rossby waves is decided by the value of S. Finally, learning from the concept of chirp in the optical soliton communication field, we study the chirp effect caused by nonlinearity and dispersion in the propagation of Rossby waves.

授权许可

Copyright © 2017 Xin Chen et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Gain spectra for frequency shift.

Three-dimensional waveform with dispersion and nonlinear effects.

The variation of the chirp effect under the dispersion and nonlinearity.

通讯作者

Hongwei Yang.Shandong University of Science and Technology, Qingdao, Shandong 266590, China, sdust.edu.cn;Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing 210044, China, nuist.edu.cn.hwyang1979@163.com

推荐引用方式

Xin Chen,Hongwei Yang,Min Guo,Baoshu Yin. (2 + 1)-Dimensional Coupled Model for Envelope Rossby Solitary Waves and Its Solutions as well as Chirp Effect. Mathematical Problems in Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
145

是否收藏?

参考文献
[1] D. J. Benny. (1966). Long non-linear waves in fluid flows. Journal of Mathematical Physics.45:52-63. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[2] R. R. Long. (1964). Solitary waves in one and two-fluids system. Journal of the Atmospheric Sciences.21:197-200. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[3] H. H. Dong, B. Y. Guo, B. S. Yin. (2016). Generalized fractional supertrace identity for Hamiltonian structure of NLS--MKdV hierarchy with self-consistent sources. Analysis and Mathematical Physics.6(2):199-209. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[4] Q. L. Zhao, X. Z. Wang. (2010). The integrable coupling system of a discrete matrix spectral problem. Applied Mathematics and Computation.216(3):730-743. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[5] X.-Y. Li, Y.-X. Li, H.-X. Yang. (2011). Two families of Liouville integrable lattice equations. Applied Mathematics and Computation.217(21):8671-8682. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[6] X. Guo. (2014). On bilinear representations and infinite conservation laws of a nonlinear variable-coefficient equation. Applied Mathematics and Computation.248:531-535. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[7] S. D. Liu, Z. T. Fu, S. K. Liu, Q. Zhao. et al.(2002). Jacobi elliptic function envelope periodic solutions for nonlinear wave equations. Chinese Physics.51(4):718-723. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[8] W. X. Ma, R. G. Zhang. (2006). Adjont symmetry constraints of muliti-component AKNS equations. Chinese Annals of Mathematics.349:153-163. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[9] D. H. Luo. (1990). The nonlinear schr÷dinger equation rotating barotropic atmosphere and atmospheric blocking. Acta. Meteor. Sinica.48:265. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[10] J. Wang, Y. M. Shi. (2006). Study of chirps induced by the higher-order nonlinear effects in the photonic crystal fiber. Acta Physica Sinica.55(6):1000-3290. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[11] E. G. Fan, H. Q. Zhang. (1998). Homogeneous balance method for nonlinear soliton equations. Chinese Journal of Physics.47(3):353-363. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[12] L. G. Yang, C. J. Da, J. Song, H. Zhang. et al.(2008). Rossby waves with linear topography in barotropic fluids. Chinese Journal of Oceanology and Limnology.26(3):334-338. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[13] H. Li, Y. Li, Y. Chen. (2015). Bi-Hamiltonian structure of multi-component Yajima-Oikawa hierarchy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences.70(11):929-934. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[14] T. Yamagata. (1980). he stability, modulation and long wave resonance of a planetary wave in a rotating, two-layer fluid on a channel -plane. Journal of the Meteorological Society of Japan.58(3):160-171. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[15] H. Dong, K. Zhao, H. Yang, Y. Li. et al.(2015). Generalised (2+1)-dimensional super MKdV hierarchy for integrable systems in soliton theory. East Asian Journal on Applied Mathematics.5(3):256-272. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[16] X.-X. Xu. (2015). A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation. Applied Mathematics and Computation.251:275-283. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[17] T. Xu, Y. Chen. (2016). Localized waves in three-component coupled nonlinear Schrödinger equation. Chinese Physics B.25(9). DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[18] D. J. Benney. (1979). The perturbed plane-wave solutions of the cubic Schrödinger equation. Studies in Applied Mathematics.60:1. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[19] L. G. Redekopp, P. D. Weidman. (1978). Solitary rossby waves in zonal shear flows and their interactions. Journal of the Atmospheric Sciences.35(5):790-804. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[20] R. Xiang, L. M. Ling, X. Lü. (2017). Some novel solutions for the two-coupled nonlinear Schröinger equations. Applied Mathematics Letters.68:163-170. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[21] H. Yang, B. Yin, Y. Shi, Q. Wang. et al.(2012). Forced ILW-Burgers equation as a model for Rossby solitary waves generated by topography in finite depth fluids. Journal of Applied Mathematics.2012. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[22] Y. Zhang, H. Dong, X. Zhang, H. Yang. et al.(2017). Rational solutions and lump solutions to the generalized -dimensional Shallow Water-like equation. Journal of Computers & Mathematics with Applications.73(2):246-252. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[23] R. Hirota. (2004). The Direct Method in Soliton Theory. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[24] Y. Zhang, W.-X. Ma. (2015). Rational solutions to a KdV-like equation. Applied Mathematics and Computation.256:252-256. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[25] W.-X. Ma. (2009). Variational identities and applications to Hamiltonian structures of soliton equations. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal.71(12):e1716-e1726. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[26] X.-X. Xu. (2010). An integrable coupling hierarchy of the Mkdv-Integrable systems, its hamiltonian structure and corresponding nonisospectral integrable hierarchy. Applied Mathematics and Computation.216(1):344-353. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[27] D.-Y. Chen, D.-J. Zhang, S.-F. Deng. (2002). The novel multi-soliton solutions of the MKdV-sine Gordon equations. Journal of the Physical Society of Japan.71(2):658-659. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[28] D. Luo. (1996). Envelope solitary ROSsby waves and modulational instabilities of uniform ROSsby wave trains in two space dimensions. Wave Motion. An International Journal Reporting Research on Wave Phenomena.24(3):315-325. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[29] B. Tan, J. P. Boyd. (2000). Coupled-mode envelope solitary waves in a pair of cubic Schrödinger equations with cross modulation: Analytical solution and collisions with applicaion to Rossby waves. Chaos, Solitons & Fractals.11(7):1113-1129. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[30] L. G. Redekopp. (1977). On the theory of solitary Rossby waves. Journal of Fluid Mechanics.82(4):725-745. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[31] S. Y. Song, J. Wang, J. M. Meng, J. B. Wang. et al.(2010). Nonlinear Schrödinger equation for internal waves in deep sea. Acta Physica Sinica.59(2):1123-1129. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[32] Q.-L. Zhao, X.-Y. Li, F.-S. Liu. (2013). Two integrable lattice hierarchies and their respective Darboux transformations. Applied Mathematics and Computation.219(10):5693-5705. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[33] X. Li, Q. Zhao. (2017). A new integrable symplectic map by the binary nonlinearization to the super AKNS system. Journal of Geometry and Physics.121:123-137. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[34] L. Huang, Y. Chen. (2017). Nonlocal symmetry and similarity reductions for the Drinfeld-Sokolov-SATsuma-Hirota system. Applied Mathematics Letters. An International Journal of Rapid Publication.64:177-184. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[35] Q.-L. Zhao, X.-Y. Li. (2016). A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Analysis and Mathematical Physics.6(3):237-254. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[36] H. Yang, Q. Zhao, B. Yin, H. Dong. et al.(2013). A new integro-differential equation for rossby solitary waves with topography effect in deep rotational fluids. Abstract and Applied Analysis.2013. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[37] Y. Shi, B. Yin, H. Yang, D. Yang. et al.(2014). Dissipative nonlinear Schrödinger Equation for envelope solitary Rossby waves with dissipation effect in stratified fluids and its solution. Abstract and Applied Analysis-Art. ID 643652, 9. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[38] Y. Li, W.-X. Ma, J. E. Zhang. (2000). Darboux transformations of classical Boussinesq system and its new solutions. Physics Letters. A.275(1-2):60-66. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
[39] H. W. Yang, Z. H. Xu, D. Z. Yang, X. R. Feng. et al.(2016). ZK-Burgers equation for three-dimensional Rossby solitary waves and its solutions as well as chirp effect. Advances in Difference Equations-2016:167, 22. DOI: 10.1175/1520-0469(1964)021<0197:SWITW>2.0.CO;2.
文献评价指标
浏览 406次
下载全文 51次
评分次数 106次
用户评分 0.0分
分享 145次