首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2017 ,2017-10-12
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Research Article
Yuteng Xiao 1 Jihang Yin 1 Honggang Qi 2 Hongsheng Yin 1 Gang Hua 1
Show affiliations
DOI:10.1155/2017/7904356
Received 2017-06-01, accepted for publication 2017-09-11, Published 2017-09-11
PDF
摘要

Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response). However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.

授权许可

Copyright © 2017 Yuteng Xiao et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Uniform linear array signal model.

The relations between diagonal loading value and output SINR in different snapshots (input: SNR = −5 dB, INR = 10 dB, and SINR = −15.414 dB).

The relations between diagonal loading value and output SINR in different snapshots (input: SNR = −5 dB, INR = 0 dB, and SINR = −8.01 dB).

The relations between diagonal loading value and output SINR in different snapshots (input: SNR = 5 dB, INR = 0 dB, and SINR = 1.990 dB).

Output SINR comparison of three algorithms in different snapshots (input: SNR = −5 dB, INR = 10 dB, and SINR = −15.414 dB).

Comparison of three algorithms for beamforming array pattern (k=50).

Comparison of three algorithms for beamforming array pattern (k=25).

Comparison of three algorithms for beamforming array pattern (k=15).

Comparison of three algorithms for beamforming array pattern (k=5).

通讯作者

Hongsheng Yin.China University of Mining and Technology, Xuzhou 221116, China, cumt.edu.cn.xuzhouyhs@sina.com

推荐引用方式

Yuteng Xiao,Jihang Yin,Honggang Qi,Hongsheng Yin,Gang Hua. MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming. Mathematical Problems in Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
365

是否收藏?

参考文献
[1] H. Cox, R. Zeskind, M. Owen. (1987). Robust adaptive beamforming. IEEE Transactions on Acoustics, Speech and Signal Processing.35(10):1365-1376. DOI: 10.1109/TGRS.2017.2655023.
[2] C. Wu, Y. Guo, Y. Na, X. Wang. et al.(2015). Robust beamforming using beam-to-reference weighting diagonal loading and Bayesian framework. IEEE Electronics Letters.51(22):1772-1774. DOI: 10.1109/TGRS.2017.2655023.
[3] N. Song, T. Yang, H. Sun. (2017). Overlapped subarray base hybrid beamfroming for millimeter wave multiuser massive MIMO. IEEE Signal processing Letters.24(5):550-554. DOI: 10.1109/TGRS.2017.2655023.
[4] J. Capon. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE.57(8):1408-1418. DOI: 10.1109/TGRS.2017.2655023.
[5] D. J. Tylavsky, G. R. L. Sohie. (1986). Generalization of the Matrix Inversion Lemma. Proceedings of the IEEE.74(7):1050-1052. DOI: 10.1109/TGRS.2017.2655023.
[6] F. Shen, F. Chen, J. Song. (2015). Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction. IEEE Communications Letters.19(9):1636-1639. DOI: 10.1109/TGRS.2017.2655023.
[7] B. D. Carlson. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems.24(4):397-401. DOI: 10.1109/TGRS.2017.2655023.
[8] X. Yang, L. Yan, Y. Sun, T. Zeng. et al.(2014). Improved orthogonal projection approach utilising interference covariance matrix reconstruction for adaptive beamforming. IEEE Electronics Letters.50(20):1446-1447. DOI: 10.1109/TGRS.2017.2655023.
[9] C. Fulton, J. L. Salazar, Y. Zhang, G. Zhang. et al.(2017). Cylindrical Polarimetric Phased Array Radar: Beamforming and Calibration for Weather Applications. IEEE Transactions on Geoscience and Remote Sensing.55(5):2827-2841. DOI: 10.1109/TGRS.2017.2655023.
[10] Y. Gu, A. Leshem. (2012). Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Transactions on Signal Processing.60(7):3881-3885. DOI: 10.1109/TGRS.2017.2655023.
[11] Z. Lu, Y. Li, M. Gao, Y. Zhang. et al.(2013). Interference covariance matrix reconstruction via steering vectors estimation for robust adaptive beamforming. IEEE Electronics Letters.49(22):1373-1374. DOI: 10.1109/TGRS.2017.2655023.
[12] J. Gu, P. J. Wolfe. Robust adaptive beamforming using variable loading. :1-5. DOI: 10.1109/TGRS.2017.2655023.
[13] L. Du, J. Li, P. Stoica. (2010). Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems.46(1):449-458. DOI: 10.1109/TGRS.2017.2655023.
文献评价指标
浏览 278次
下载全文 26次
评分次数 0次
用户评分 0.0分
分享 365次