首页 » 文章 » 文章详细信息
Journal of Engineering Volume 2017 ,2017-10-12
Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs
Research Article
Yutian Luo 1 , 2 Zhengming Yang 1 , 2 Lixin Meng 3 Shutie Li 2
Show affiliations
DOI:10.1155/2017/6705263
Received 2017-04-17, accepted for publication 2017-09-07, Published 2017-09-07
PDF
摘要

This paper took extra low permeability reservoirs in Dagang Liujianfang Oilfield as an example and analyzed different types of microscopic pore structures by SEM, casting thin sections fluorescence microscope, and so on. With adoption of rate-controlled mercury penetration, NMR, and some other advanced techniques, based on evaluation parameters, namely, throat radius, volume percentage of mobile fluid, start-up pressure gradient, and clay content, the classification and assessment method of extra low permeability reservoirs was improved and the parameter boundaries of the advantageous reservoirs were established. The physical properties of reservoirs with different depth are different. Clay mineral variation range is 7.0%, and throat radius variation range is 1.81 μm, and start pressure gradient range is 0.23 MPa/m, and movable fluid percentage change range is 17.4%. The class IV reservoirs account for 9.56%, class II reservoirs account for 12.16%, and class III reservoirs account for 78.29%. According to the comparison of different development methods, class II reservoir is most suitable for waterflooding development, and class IV reservoir is most suitable for gas injection development. Taking into account the gas injection in the upper section of the reservoir, the next section of water injection development will achieve the best results.

授权许可

Copyright © 2017 Yutian Luo et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Full diameter core from a selected well.

Microcosmic pore characteristics of different depths of reservoirs.

Curves of various petrophysical parameters changing with depth.

Comparison chart between advantageous reservoirs, porosity, and permeability.

Curves of oil and water phase-permeability in three types of reservoirs and photos of residual oil.

Curves of oil & gas phase-permeability in three types of reservoirs and photos of residual oil.

通讯作者

Yutian Luo.University of Chinese Academy of Sciences, Beijing 100190, China, ucas.ac.cn;PetroChina Research Institute of Petroleum Exploration & Development, Langfang 065007, China, petrochina.com.luoyutian@petrochina.com.cn

推荐引用方式

Yutian Luo,Zhengming Yang,Lixin Meng,Shutie Li. Advantageous Reservoir Characterization Technology in Extra Low Permeability Oil Reservoirs. Journal of Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
35

是否收藏?

参考文献
[1] C. Clarkson, J. Jensen, S. Chipperfield. (2012). Unconventional gas reservoir evaluation: What do we have to consider?. Journal of Natural Gas Science and Engineering.8:9-33. DOI: 10.1016/S1876-3804(15)30075-6.
[2] Z. Guangming, G. Weiliang. (2005). Petroleum Geology of China. DOI: 10.1016/S1876-3804(15)30075-6.
[3] W. Xuewu, Y. Zhengming, L. Xiaxia. (2008). Micro pore structure in extra-low permeability reservoir of Yushulin Oilfield. Journal of Oil and Gas Technology.30(2):508-510. DOI: 10.1016/S1876-3804(15)30075-6.
[4] Y. Zhengming, Z. Yingzhi, H. Mingqiang. (2006). Comprehensive evaluation of reservoir in low permeability oilfields. Acta Petrolei Sinica.27(2):64-67. DOI: 10.1016/S1876-3804(15)30075-6.
[5] M. O. Okuyiga, A. Berrim, S. S. Haddad, C. Xian. et al.Multidisciplinary approach and new technology improves carbonate reservoir evaluation. . DOI: 10.1016/S1876-3804(15)30075-6.
[6] S. Takahashi, A. R. Kovscek. (2010). Wettability estimation of low-permeability, siliceous shale using surface forces. Journal of Petroleum Science and Engineering.75(1-2):33-43. DOI: 10.1016/S1876-3804(15)30075-6.
[7] Y. Zhengming, M. Sheng, L. Xiangui. (2007). Percentage parameter of the movable fluid in extra-low permeability reservoir and its application. Journal of Xian Petroleum University: Natural Science Edition.22(2):96-99. DOI: 10.1016/S1876-3804(15)30075-6.
[8] W. Weimin, G. Hekun, Y. Zhaohui. (2001). The Evaluation of development potential in low permeability oilfield by the aid of NMR movable fluid detecting technology. Acta Petrolei Sinica.22(6):40-44. DOI: 10.1016/S1876-3804(15)30075-6.
[9] M. O. Amabeoku, D. G. Kersey, R. H. BinNasser, H. H. Mohammadi. et al.Strategies for acquiring and integrating petrophysical data for reservoir evaluation. . DOI: 10.1016/S1876-3804(15)30075-6.
[10] Z. Daqian, L. Shuzhen. (1994). Types and characteristics of low permeability sandstone reservoirs in China. Acta Petrolei Sinica.15(1):38-46. DOI: 10.1016/S1876-3804(15)30075-6.
[11] L. Yutian, Y. Zhengming, H. Ying. (2014). The research of lithology characteristics and effective development in tight oil reservoir. Unconventional Oil & Gas.1(1):47-54. DOI: 10.1016/S1876-3804(15)30075-6.
[12] G. Jingjing, T. Xiaoyun, C. Hua. (2014). The characters of preferential seepage channel and remaining oil distribution in the meandering-river reservoir. Journal of Oil and Gas Technology.36(7):117-121. DOI: 10.1016/S1876-3804(15)30075-6.
[13] Z. Zhonghong, Y. Zhengming, L. Xiangui. (2012). Yang Zhengming, Liu Xiangui. Acta Petrolei Sinica.33(3):437-441. DOI: 10.1016/S1876-3804(15)30075-6.
[14] P. Shimi, X. Yin, Z. Jichun. (2006). Evolutionary pattern of clay mineral and rock sensitivity in water-flooding reservoir. Acta Petrolei Sinica.27(4):71-75. DOI: 10.1016/S1876-3804(15)30075-6.
[15] T. Pfeiffer, V. Kretz, D. Opsen, V. Achourov. et al.Fluid profiling for reservoir evaluation - two norwegian case studies. . DOI: 10.1016/S1876-3804(15)30075-6.
[16] X. Zhao, Q. Wang, F. Jin, N. Luo. et al.(2015). Re-exploration program for petroleum-rich sags and its significance in Bohai Bay Basin, East China. Petroleum Exploration and Development.42(6):790-801. DOI: 10.1016/S1876-3804(15)30075-6.
[17] L. Yubao, Y. Qingyan, L. Xiangui. (2006). Three-phase seepage characteristics of oil, gas and water in low permeability reservoirs. Acta Petrolei Sinica.27(S):124-128. DOI: 10.1016/S1876-3804(15)30075-6.
[18] X. Wenhui, X. Wenjun, G. Wenzhong. (2014). Research on prediction technology for favorable reservoir in Sha-1 member in nanpu oilfield. Special Oil and Gas Reservoirs.21(4):70-73. DOI: 10.1016/S1876-3804(15)30075-6.
[19] Y. Shi, Y. Zhengming, H. Yanzhang. (2009). Study on non-linear seepage flow model for low-permeability reservoir. Acta Petrolei Sinica.30(5):731-734. DOI: 10.1016/S1876-3804(15)30075-6.
[20] Y. Zhengming, Y. Rongze, S. Zhixin. (2010). Numerical simulation of the nonlinear flow in extra-low permeability reservoirs. Petroleum Exploration and Development.37(1):94-98. DOI: 10.1016/S1876-3804(15)30075-6.
[21] C. Zhang, L. Xiao, Z. Mao, Z. Sun. et al.A novel method to construct capillary pressure curves by using NMR log data and its application in reservoir evaluation, SPE 126735. . DOI: 10.1016/S1876-3804(15)30075-6.
[22] H. Wilkes, A. Vieth, R. Elias. (2008). Constraints on the quantitative assessment of in-reservoir biodegradation using compound-specific stable carbon isotopes. Organic Geochemistry.39(8):1215-1221. DOI: 10.1016/S1876-3804(15)30075-6.
[23] R. J. Marchel, C. H. Smith, S. Ramakrishna. Utilizing simultaneous capture of T1 and T2 NMR data to solve reservoir evaluation issues. . DOI: 10.1016/S1876-3804(15)30075-6.
[24] A. Al-Ghamdi, B. Chen, H. Behmanesh, F. Qanbari. et al.An improved triple-porosity model for evaluation of naturally fractured reservoirs. :397-404. DOI: 10.1016/S1876-3804(15)30075-6.
[25] H. Wenrui. (2009). The present and future of low permeability of oil and gas in China. Engineering Sciences.11(8):29-37. DOI: 10.1016/S1876-3804(15)30075-6.
[26] G. R. Chalmers, R. M. Bustin. (2012). Geological evaluation of Halfway–Doig–Montney hybrid gas shale–tight gas reservoir, northeastern British Columbia. Marine and Petroleum Geology.38(1):53-72. DOI: 10.1016/S1876-3804(15)30075-6.
[27] W. McCaffrey, B. Knelle. (2001). Process controls on the development of stratigraphic trap potential on the margins of confined turbidite systems and aids to reservoir evaluation. AAPG Bulletin.85(6):971-988. DOI: 10.1016/S1876-3804(15)30075-6.
文献评价指标
浏览 163次
下载全文 27次
评分次数 0次
用户评分 0.0分
分享 35次