首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2017 ,2017-08-15
The Evaluation of Antioxidant and Anti-Inflammatory Effects of Eucommia ulmoides Flavones Using Diquat-Challenged Piglet Models
Research Article
Daixiu Yuan 1 Tarique Hussain 2 , 3 Bie Tan 2 , 4 Yanhong Liu 4 Peng Ji 4 Yulong Yin 2
Show affiliations
DOI:10.1155/2017/8140962
Received 2017-05-10, accepted for publication 2017-07-18, Published 2017-07-18
PDF
摘要

This study was designed to evaluate the antioxidant and anti-inflammatory effects of Eucommia ulmoides flavones (EUF) using diquat-challenged piglet models. A total of 96 weaned piglets were randomly allotted to 1 of 3 treatments with 8 replication pens per treatment and 4 piglets per pen. The treatments were basal diet, basal diet + diquat, and 100 mg/kg EUF diet + diquat. On day 7 after the initiation of treatment, the piglets were injected intraperitoneally with diquat at 8 mg/kg BW or the same amount of sterilized saline. The experiment was conducted for 21 days. EUF supplementation improved the growth performance of diquat-treated piglets from day 14 to 21. Diquat also induced oxidative stress and inflammatory responses and then impaired intestinal morphology. But EUF addition alleviated these negative effects induced by diquat that showed decreasing serum concentrations of proinflammatory cytokines but increasing antioxidant indexes and anti-inflammatory cytokines on day 14. Supplementation of EUF also increased villi height and villous height, crypt depth, but decreased the histopathological score and MPO activity compared with those of diquat-challenged pigs fed with the basal diet on day 14. Results indicated that EUF attenuated the inflammation and oxidative stress of piglets caused by diquat injection.

授权许可

Copyright © 2017 Daixiu Yuan et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Myeloperoxidase activity in the colon of piglets. Values are the mean ± SEM, n=8 per treatment group. a-bMean values sharing different superscripts within anterior colon or posterior colon differ (p<0.05).

通讯作者

Bie Tan.National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China, cas.cn;Department of Animal Science, University of California Davis, Davis, CA 95616, USA, ucdavis.edu.bietan@isa.ac.cn

推荐引用方式

Daixiu Yuan,Tarique Hussain,Bie Tan,Yanhong Liu,Peng Ji,Yulong Yin. The Evaluation of Antioxidant and Anti-Inflammatory Effects of Eucommia ulmoides Flavones Using Diquat-Challenged Piglet Models. Oxidative Medicine and Cellular Longevity ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
6

是否收藏?

参考文献
[1] S. B. Yuan, D. W. Chen, K. Y. Zhang, B. Yu. et al.(2007). Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Australian Journal of Animal Sciences.20(10):1600-1605. DOI: 10.1155/2014/761264.
[2] Q. Li, J. Chen, T. Li, C. Liu. et al.(2015). Separation and characterization of polyphenolics from underutilized byproducts of fruit production (Choerospondias axillaris peels): inhibitory activity of proanthocyanidins against glycolysis enzymes. Food and Function.6(12):3693-3701. DOI: 10.1155/2014/761264.
[3] Q. Deng, J. Xu, B. Yu, J. He. et al.(2010). Effect of dietary tea polyphenols on growth performance and cell-mediated immune response of post-weaning piglets under oxidative stress. Archives of Animal Nutrition.64(1):12-21. DOI: 10.1155/2014/761264.
[4] M. Lv, B. Yu, X. B. Mao, P. Zheng. et al.(2012). Responses of growth performance and tryptophan metabolism to oxidative stress induced by diquat in weaned pigs. Animal.6(6):928-934. DOI: 10.1155/2014/761264.
[5] G. Bobe, L. B. Sansbury, P. S. Albert, A. J. Cross. et al.(2008). Dietary flavonoids and colorectal adenoma recurrence in the polyp prevention trial. Cancers Epidemiology Biomarkers and Prevention.17(6):1344-1353. DOI: 10.1155/2014/761264.
[6] T. Hussain, B. Tan, Y. Yin, F. Blachier. et al.(2016). Oxidative stress and inflammation: what polyphenols can do for us?. Oxidative Medicine and Cellular Longevity.2016-9. DOI: 10.1155/2014/761264.
[7] T. Rahman, I. Hosen, M. M. T. Islam, H. U. Shekhar. et al.(2012). Oxidative stress and human health. Advances in Biosciences and Biotechnology.3(7):997-1019. DOI: 10.1155/2014/761264.
[8] K. U. Schallreuter, N. C. Gibbons, C. Zothner, M. M. Abou Ellof. et al.(2007). Hydrogen peroxide-mediated oxidative stress disrupts calcium binding on calmodulin: more evidence for oxidative stress in vitiligo. Biochemical and Biophysical Research Communications.360(1):70-75. DOI: 10.1155/2014/761264.
[9] K. Schulze-Osthoff, M. Los, P. A. Baeuerle. (1995). Redox signaling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochemical Pharmacology.50(6):735-741. DOI: 10.1155/2014/761264.
[10] J. Yin, M. F. Liu, W. Ren, J. Duan. et al.(2015). Effects of dietary supplementation with glutamate and aspartate on diquat-induced oxidative stress in piglets. PLoS One.10(4, article e0122893). DOI: 10.1155/2014/761264.
[11] J. J. Haddad, H. L. Harb. (2005). l--Glutamyl-l-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)?. Molecular Immunology.42(9):987-1014. DOI: 10.1155/2014/761264.
[12] Y. Chen, X. Gong, G. Li, M. Lin. et al.(2016). Effects of dietary alfalfa flavonoids extraction on growth performance, organ development and blood biochemical indexes of Yangzhou geese aged from 28 to 70 days. Animal Nutrition.2(4):318-322. DOI: 10.1155/2014/761264.
[13] T. Guzik, R. Korbut, T. Adamek-Guzik. (2003). Nitric oxide and superoxide in inflammation and immune regulation. Journal of Physiological Pharmacology.54(4):469-487. DOI: 10.1155/2014/761264.
[14] W. B. Song, Y. Y. Wang, F. S. Meng, Q. H. Zhang. et al.(2010). Curcumin protects intestinal mucosal barrier function of rat enteritis via activation of MKP-1 and attenuation of p38 and NF-κB activation. PLoS One.5(9, article e12969). DOI: 10.1155/2014/761264.
[15] W. O. Osburn, N. Wakabayashi, V. Misra, T. Nilles. et al.(2006). Nrf2 regulates an adaptive response protecting against oxidative damage following diquat-mediated formation of superoxide anion. Archives of Biochemistry and Biophysics.454(1):7-15. DOI: 10.1155/2014/761264.
[16] C. Forster. (2008). Tight junctions and the modulation of barrier function in disease. Histochemistry and Cell Biology.130(1):55-70. DOI: 10.1155/2014/761264.
[17] J. M. Gutteridge. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clinical Chemistry.41(12):1819-1828. DOI: 10.1155/2014/761264.
[18] M. J. Tuñón, M. V. García-Mediavilla, S. Sánchez-Campos, J. González-Gallego. et al.(2009). Potential of flavonoids as anti-inflammatory agents: modulation of pro-inflammatory gene expression and signal transduction pathways. Current Drug Metabolism.10(3):256-271. DOI: 10.1155/2014/761264.
[19] D. Ribeiro, M. Freitas, J. L. Lima, E. Fernandes. et al.(2015). Proinflammatory pathways: the modulation by flavonoids. Medicinal Research Reviews.35(5):877-936. DOI: 10.1155/2014/761264.
[20] T. Lightfoot, C. Skibola, A. Smith, M. S. Forrest. et al.(2006). Polymorphisms in the oxidative stress genes, superoxide dismutase, glutathione peroxidase and catalase and risk of non-Hodgkin’s lymphoma. Haematologica.91(9):1222-1227. DOI: 10.1155/2014/761264.
[21] A. Rahal, A. Kumar, V. Singh, B. Yadav. et al.(2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMedical Research International.2014-19. DOI: 10.1155/2014/761264.
[22] A. W. Boots, M. Drent, E. L. Swennen, H. J. Moonen. et al.(2009). Antioxidant status associated with inflammation in sarcoidosis: a potential role for antioxidants. Respiratory Medicine.103(3):364-372. DOI: 10.1155/2014/761264.
[23] B. Halliwell. (2007). Oxidative stress and cancer: have we moved forward?. Biochemical Journal.401(1):1-11. DOI: 10.1155/2014/761264.
[24] S. A. Park, M. S. Choi, U. J. Jung, M. J. Kim. et al.(2006). Eucommia ulmoides Oliv. leaf extract increases endogenous antioxidant activity in type2 diabetic mice. Journal of Medicinal Food.9(4):474-479. DOI: 10.1155/2014/761264.
[25] P. Zheng, B. Yu, M. Lv, D. W. Chen. et al.(2010). Effects of oxidative stress induced by diquat on arginine metabolism of post-weaning pigs. Asian-Australian Journal of Animal Science.23(1):98-105. DOI: 10.1155/2014/761264.
[26] K. B. Beckman, B. N. Ames. (1998). The free radical theory of aging matures. Physiological Reviews.78(2):547-581. DOI: 10.1155/2014/761264.
[27] S. H. Liu, K. Ma, X. R. Xu, B. Xu. et al.(2010). A single dose of carbon monoxide intraperitoneal administration protects rat intestine from injury induced by lipopolysaccharide. Cell Stress and Chaperones.15(5):717-727. DOI: 10.1155/2014/761264.
[28] M. Deniz, B. M. Atasoy, F. Dane, G. Can. et al.(2015). Radiation-induced oxidative injury of the ileum and colon is alleviated by glucagon-like peptide-1 and -2. Journal of Radiation Research and Applied Sciences.8(2):234-242. DOI: 10.1155/2014/761264.
[29] P. F. Surai, V. I. Fisinin. (2015). Antioxidant-prooxidant balance in the intestine: applications in chick placement and pig weaning. Journal of Veterinary Science and Medicine.3(1):16. DOI: 10.1155/2014/761264.
[30] B. Halliwell, K. Zhao, M. Whiteman. (2000). The gastrointestinal tract: a major site of antioxidant action?. Free Radicals Research.33(6):819-830. DOI: 10.1155/2014/761264.
[31] S. Egert, C. Boesch-Saadatmandi, S. Wolffram, G. Rimbach. et al.(2010). Serum lipid and blood pressure responses to quercetin vary in overweight patients by apolipoprotein E genotype. Journal of Nutrition.140(2):278-284. DOI: 10.1155/2014/761264.
[32] N. Nieto, M. I. Torres, M. I. Fernández, M. D. Girón. et al.(2000). Experimental ulcerative colitis impairs antioxidant defense system in rat intestine. Digestive Diseases and Sciences.45(9):1820-1827. DOI: 10.1155/2014/761264.
[33] D. G. Nagle, D. Ferreira, Y. D. Zhou. (2006). Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry.67(17):1849-1855. DOI: 10.1155/2014/761264.
[34] O. K. Chun, S. J. Chung, W. O. Song. (2007). Estimated dietary flavonoid intake and major food sources of U.S. adults. Journal of Nutrition.137(5):1244-1252. DOI: 10.1155/2014/761264.
[35] Z. G. Cheng, Y. C. Lin, D. Q. Yu, S. Q. Jiang. et al.(2005). Effects of daidzein on growth performance and its potential mechanism in finishing pigs. Chinese Journal of Animal Nutrition.1:30-34. DOI: 10.1155/2014/761264.
[36] J. Wang, B. E. Tan, G. R. Li, Y. Yin. et al.(2016). Polyamine metabolism in the intestine of piglets is altered by weaning and proline supplementation. Journal of Animal Science.94:423-428. DOI: 10.1155/2014/761264.
[37] P. Zelnickova, L. Leva, H. Stepanova, F. Kovaru. et al.(2008). Age-dependent changes of proinflammatory cytokine production by porcine peripheral blood phagocytes. Veterinary Immunology and Immunopathology.124(3-4):367-378. DOI: 10.1155/2014/761264.
[38] Y. C. Zhou, R. X. Zhao, Y. D. Ni, L. Z. Lu. et al.(2004). Effect of daidzein on laying performance of Shaoxing ducks and its central mechanisms involved. Scientia Agricola (Piracicaba, Brazil).37(2):296-300. DOI: 10.1155/2014/761264.
[39] S. Muqier, T. Qi, R. Wang, C. W. Chen. et al.(2017). Effects of flavonoids from Allium mongolicum Regel on growth performance and growth-related hormones in meat sheep. Animal Nutrition.3(1):33-38. DOI: 10.1155/2014/761264.
[40] B. Huang, D. F. Xiao, B. E. Tan, H. Xiao. et al.(2016). Chitosan oligosaccharide reduces intestinal inflammation that involves calcium-sensing receptor (CaSR) activation in lipopolysaccharide (lps)-challenged piglets. Journal of Agriculture and Food Chemistry.64(1):245-252. DOI: 10.1155/2014/761264.
[41] N. Pusterla, K. G. Magdesian, S. Mapes, C. M. Leutenegger. et al.(2006). Expression of molecular markers in blood of neonatal foals with sepsis. American Journal of Veterinary Research.67(6):1045-1049. DOI: 10.1155/2014/761264.
[42] H. Xiao, B. E. Tan, M. M. Wu, Y. L. Yin. et al.(2013). Effects of composite antimicrobial peptides in weanling piglets challenged with deoxynivalenol: II. Intestinal morphology and function. Journal of Animal Science.91(10):4750-4756. DOI: 10.1155/2014/761264.
[43] I. A. Clark. (2007). How TNF was recognized as a key mechanism of disease. Cytokine Growth Factors Review.18(3-4):335-343. DOI: 10.1155/2014/761264.
[44] A. B. Burton, B. Wagner, H. N. Erb, D. M. Ainsworth. et al.(2009). Serum interleukin-6 and IL-10 concentrations in normal and septic foals. Veterinary Immunology and Immunopathology.132(2–4):122-128. DOI: 10.1155/2014/761264.
[45] T. Hussain, B. Tan, G. Liu, O. A. Oladele. et al.(2016). Health-promoting properties of : a review. Evidence-Based Complementary and Alternative Medicine.2016-9. DOI: 10.1155/2014/761264.
[46] T. Lu, X. L. Piao, Q. Zhang, D. Wang. et al.(2010). Protective effects of Forsythia suspensa extract against oxidative stress induced by diquat in rats. Food Chemistry and Toxicology.48(2):764-770. DOI: 10.1155/2014/761264.
[47] Y. Cheng, Y. Y. Zhao, Y. X. Cui, T. M. Cheng. et al.(2000). Studies on flavonoids from leave of Eucommia ulmoides Oliv. Zhongguo Zhong Yao Za Zhi.25(5):284-286. DOI: 10.1155/2014/761264.
[48] Q. Li, X. Wang, T. Dai, C. Liu. et al.(2016). Proanthocyanidins, isolated from Choerospondias axillaris fruit peels, exhibit potent antioxidant activities in vitro and a novel anti-angiogenic property and. Journal of Agriculture and Food Chemistry.64(18):3546-3556. DOI: 10.1155/2014/761264.
[49] D. C. Quettier, B. Gressier, J. Vasseur, T. Dine. et al.(2000). Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. Journal of Ethnopharmacology.72(1-2):35-42. DOI: 10.1155/2014/761264.
文献评价指标
浏览 48次
下载全文 6次
评分次数 0次
用户评分 0.0分
分享 6次