首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2017 ,2017-08-15
FOXO Transcriptional Factors and Long-Term Living
Review Article
Ghulam Murtaza 1 , 2 , 3 Abida Kalsoom Khan 4 Rehana Rashid 4 Saiqa Muneer 5 Syed Muhammad Farid Hasan 6 Jianxin Chen 1
Show affiliations
DOI:10.1155/2017/3494289
Received 2017-05-06, accepted for publication 2017-06-21, Published 2017-06-21
PDF
摘要

Several pathologies such as neurodegeneration and cancer are associated with aging, which is affected by many genetic and environmental factors. Healthy aging conceives human longevity, possibly due to carrying the defensive genes. For instance, FOXO (forkhead box O) genes determine human longevity. FOXO transcription factors are involved in the regulation of longevity phenomenon via insulin and insulin-like growth factor signaling. Only one FOXO gene (FOXO DAF-16) exists in invertebrates, while four FOXO genes, that is, FOXO1, FOXO3, FOXO4, and FOXO6 are found in mammals. These four transcription factors are involved in the multiple cellular pathways, which regulate growth, stress resistance, metabolism, cellular differentiation, and apoptosis in mammals. However, the accurate mode of longevity by FOXO factors is unclear until now. This article describes briefly the existing knowledge that is related to the role of FOXO factors in human longevity.

授权许可

Copyright © 2017 Ghulam Murtaza et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Various modes of aging.

The crucial intracellular pathways targeted by FOXOs are presented here as modes of longevity effects of FOXOs. FOXOs are known to regulate translation of environment-induced stimuli into gene expression. FOXO-mediated longevity (especially through FOXO3) could be due to upregulated target genes pertained to apoptosis, cell cycle arrest, and resistance to stress leading to prevention of aging and age-associated diseases such as cancer and neurodegenerative diseases. The green part of the above figure illustrates cellular redox potential in mitochondria restoring NAD+. It results in the calorie restriction leading to various processes such as ameliorated autophagy, inhibited mTOR activity, and sirtuin-mediated activation of FOXOs giving rise to long-term living. While the red part of the above figure shows elevated levels of NADH due to excessive calorie intake resulting in lipogenesis, activated mTOR, excessive release of ROS, and suppressed autophagy leading to frailty. TCAC = tricarboxylic acid cycle; CAD = coronary artery disease; PPARγC1α = peroxisome proliferator-activated receptor-γ coactivator 1α; GCN1l1 = general control of amino acid synthesis 1-like 1; HNF4a = hepatocyte nuclear factor 4α; O-GlcNAc = O-linked N-acetylglucosamine.

通讯作者

1. Ghulam Murtaza.Beijing University of Chinese Medicine, Beisanhuan East Road, Beijing 100029, China, bucm.edu.cn;Department of Pharmacy, COMSATS Institute of Information Technology, Abbottabad, Pakistan, comsats.edu.pk;Institute of Automation, Chinese Academy of Sciences, Beijing, China, cas.cn.gmdogar356@gmail.com
2. Jianxin Chen.Beijing University of Chinese Medicine, Beisanhuan East Road, Beijing 100029, China, bucm.edu.cn.cjx@bucm.edu.cn

推荐引用方式

Ghulam Murtaza,Abida Kalsoom Khan,Rehana Rashid,Saiqa Muneer,Syed Muhammad Farid Hasan,Jianxin Chen. FOXO Transcriptional Factors and Long-Term Living. Oxidative Medicine and Cellular Longevity ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
13

是否收藏?

参考文献
[1] L. Su, X. Liu, N. Chai, L. Lv. et al.(2014). The transcription factor FOXO4 is down-regulated and inhibits tumor proliferation and metastasis in gastric cancer. BMC Cancer.14:378. DOI: 10.3389/fgene.2012.00277.
[2] S. T. Henderson, T. E. Johnson. (2001). Daf-16 integrates developmental and environmental inputs to mediate aging in the nematode Caenorhabditis elegans. Current Biology.11:1975-1980. DOI: 10.3389/fgene.2012.00277.
[3] K. Lin, H. Hsin, N. Libina, C. Kenyon. et al.(2001). Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genetics.28:139-145. DOI: 10.3389/fgene.2012.00277.
[4] K. Miyamoto, K. Y. Araki, K. Naka, F. Arai. et al.(2007). Foxo3a is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell.1:101-112. DOI: 10.3389/fgene.2012.00277.
[5] Z. Fu, D. J. Tindall. (2008). FOXOs, cancer and regulation of apoptosis. Oncogene.27(16):2312. DOI: 10.3389/fgene.2012.00277.
[6] Z. Tothova, R. Kollipara, B. J. Huntly, B. H. Lee. et al.(2007). FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell.128:325-339. DOI: 10.3389/fgene.2012.00277.
[7] K. Tsuchiya, M. Westerterp, A. J. Murphy, V. Subramanian. et al.(2013). Expanded granulocyte/monocyte compartment in myeloid specific triple FoxO knockout increases oxidative stress and accelerates atherosclerosis in mice. Circulation Research.112:992-1003. DOI: 10.3389/fgene.2012.00277.
[8] G. Atzmon, C. Schechter, W. Greiner, D. Davidson. et al.(2004). Clinical phenotype of families with longevity. Journal of the American Geriatrics Society.52:274-277. DOI: 10.3389/fgene.2012.00277.
[9] M. M. Brent, R. Anand, R. Marmorstein. (2008). Structural basis for DNA recognition by FoxO1 and its regulation by posttranslational modification. Structure.16(9):1407-1416. DOI: 10.3389/fgene.2012.00277.
[10] B. J. Willcox, D. C. Willcox, Q. He, J. D. Curb. et al.(2006). Siblings of Okinawan centenarians share lifelong mortality advantages. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.61:345-354. DOI: 10.3389/fgene.2012.00277.
[11] Z. Tothova, D. G. Gilliland. (2007). FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell.1:140-152. DOI: 10.3389/fgene.2012.00277.
[12] X. Liu, Z. Zhang, L. Sun, N. Chai. et al.(2011). MicroRNA-499-5p promotes cellular invasion and tumor metastasis in colorectal cancer by targeting FOXO4 and PDCD4. Carcinogenesis.32(12):1798-1805. DOI: 10.3389/fgene.2012.00277.
[13] K. Christensen, T. E. Johnson, J. W. Vaupel. (2006). The quest for genetic determinants of human longevity: challenges and insights. Nature Reviews Genetics.7:436-448. DOI: 10.3389/fgene.2012.00277.
[14] N. A. Bishop, L. Guarente. (2007). Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Reviews Genetics.8:835-844. DOI: 10.3389/fgene.2012.00277.
[15] D. R. Calnan, A. Brunet. (2008). The FoxO code. Oncogene.27:2276-2288. DOI: 10.3389/fgene.2012.00277.
[16] S. Hannenhalli, K. H. Kaestner. (2009). The evolution of fox genes and their role in development and disease. Nature Reviews Genetics.10:233-240. DOI: 10.3389/fgene.2012.00277.
[17] J. V. Hjelmborg, I. Iachine, A. Skytthe, J. W. Vaupel. et al.(2006). Genetic influence on human lifespan and longevity. Human Genetics.119:312-321. DOI: 10.3389/fgene.2012.00277.
[18] X. Zhang, S. Yalcin, D. F. Lee, T. Y. Yeh. et al.(2011). FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nature Cell Biology.13:1092-1099. DOI: 10.3389/fgene.2012.00277.
[19] K. H. Kaestner, W. Knochel, D. E. Martinez. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development.14:142-146. DOI: 10.3389/fgene.2012.00277.
[20] E. C. Genin, N. Caron, R. Vandenbosch, L. Nguyen. et al.(2014). Concise review: forkhead pathway in the control of adult neurogenesis. Stem Cells.32:1398-1407. DOI: 10.3389/fgene.2012.00277.
[21] L. B. Boyette, R. S. Tuan. (2014). Adult stem cells and diseases of aging. Journal of Clinical Medicine.3:88-134. DOI: 10.3389/fgene.2012.00277.
[22] M. M. Xu, G. X. Mao, J. Liu, J. C. Li. et al.(2014). Low expression of the FoxO4 gene may contribute to the phenomenon of EMT in non-small cell lung cancer. Asian Pacific Journal of Cancer Prevention.15(9):4013-4018. DOI: 10.3389/fgene.2012.00277.
[23] P. Sebastiani, T. T. Perls. (2012). The genetics of extreme longevity: lessons from the new England centenarian study. Frontiers in Genetics.3:277. DOI: 10.3389/fgene.2012.00277.
[24] A. R. Brooks-Wilson. (2013). Genetics of healthy aging and longevity. Human Genetics.132:1323-1338. DOI: 10.3389/fgene.2012.00277.
[25] R. Martins, G. J. Lithgow, W. Link. (2016). Long live FOXO: unraveling the role of FOXO proteins in aging and longevity. Aging Cell.15:196-207. DOI: 10.3389/fgene.2012.00277.
[26] J. M. Murabito, R. Yuan, K. L. Lunetta. (2012). The search for longevity and healthy aging genes: insights from epidemiological studies and samples of long-lived individuals. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.67:470-479. DOI: 10.3389/fgene.2012.00277.
[27] R. Hill, R. K. Kalathur, S. Callejas, L. Colaco. et al.(2014). A novel phosphatidylinositol 3-kinase (PI3K) inhibitor directs a potent FOXO-dependent, p53-independent cell cycle arrest phenotype characterized by the differential induction of a subset of FOXO-regulated genes. Breast Cancer Research.16:482. DOI: 10.3389/fgene.2012.00277.
[28] J. F. Morley, H. R. Brignull, J. J. Weyers, R. I. Morimoto. et al.(2002). The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America.99:10417-10422. DOI: 10.3389/fgene.2012.00277.
[29] G. A. Walker, G. J. Lithgow. (2003). Lifespan extension in C. elegans by a molecular chaperone dependent upon insulin-like signals. Aging Cell.2:131-139. DOI: 10.3389/fgene.2012.00277.
[30] G. J. Kops, T. B. Dansen, P. E. Polderman, I. Saarloos. et al.(2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature.419:316-321. DOI: 10.3389/fgene.2012.00277.
[31] P. Storz. (2011). Forkhead homeobox type O transcription factors in the responses to oxidative stress. Antioxidants & Redox Signaling.14:593-605. DOI: 10.3389/fgene.2012.00277.
[32] L. Pawlikowska, D. Hu, S. Huntsman, A. Sung. et al.(2009). Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell.8:460-472. DOI: 10.3389/fgene.2012.00277.
[33] Y. Suh, G. Atzmon, M.-O. Cho, D. Hwang. et al.(2008). Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proceedings of the National Academy of Sciences of the United States of America.105:3438-3442. DOI: 10.3389/fgene.2012.00277.
[34] F. Flachsbart, A. Caliebe, R. Kleindorp, H. Blanche. et al.(2009). Association of FOXO3A variation with human longevity confirmed in German centenarians. Proceedings of the National Academy of Sciences of the United States of America.106:2700-2705. DOI: 10.3389/fgene.2012.00277.
[35] M. Kuningas, M. L. Putters, R. G. J. Westendorp, P. E. Slagboom. et al.(2007). SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.62:960-965. DOI: 10.3389/fgene.2012.00277.
[36] M. Soerensen, M. Nygaard, S. Dato, T. Stevnsner. et al.(2015). Association study of FOXO3A SNPs and aging phenotypes in Danish oldest-old individuals. Aging Cell.14:60-66. DOI: 10.3389/fgene.2012.00277.
[37] M. Soerensen, S. Dato, K. Christensen, M. McGue. et al.(2010). Replication of an association of variation in the FOXO3A gene with human longevity using both case-control and longitudinal data. Aging Cell.9:1010-1017. DOI: 10.3389/fgene.2012.00277.
[38] A. Eijkelenboom, B. M. Burgering. (2013). FOXOs: signalling integrators for homeostasis maintenance. Nature Reviews Molecular Cell Biology.14:83-97. DOI: 10.3389/fgene.2012.00277.
[39] A. E. Webb, A. Brunet. (2014). FOXO transcription factors: key regulators of cellular quality control. Trends in Biochemical Sciences.39:159-169. DOI: 10.3389/fgene.2012.00277.
[40] C. T. Murphy, S. A. McCarroll, C. I. Bargmann, A. Fraser. et al.(2003). Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature.424:277-283. DOI: 10.3389/fgene.2012.00277.
[41] M. Putker, T. Madl, H. R. Vos, H. Ruiter. et al.(2013). Redox-dependent control of FOXO/DAF-16 by transportin-1. Molecular Cell.49:730-742. DOI: 10.3389/fgene.2012.00277.
[42] S. Nemoto, T. Finkel. (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science.295:2450-2452. DOI: 10.3389/fgene.2012.00277.
[43] L. Broer, A. S. Buchman, J. Deelen, D. S. Evans. et al.(2015). GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.70:110-118. DOI: 10.3389/fgene.2012.00277.
[44] K. Fang, H. Zhao, C. Sun, C. M. Lam. et al.(2011). Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction. BMC Systems Biology.5:83. DOI: 10.3389/fgene.2012.00277.
[45] J. M. Bao, X. L. Song, Y. Q. Hong, H. L. Zhu. et al.(2014). Association between FOXO3A gene polymorphisms and human longevity: a meta-analysis. Asian Journal of Andrology.16:446-452. DOI: 10.3389/fgene.2012.00277.
[46] T. A. Donlon, J. D. Curb, Q. He, J. S. Grove. et al.(2012). FOXO3 gene variants and human aging: coding variants may not be key players. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.67:1132-1139. DOI: 10.3389/fgene.2012.00277.
[47] C. Lopez-Otin, M. A. Blasco, L. Partridge, M. Serrano. et al.(2013). The hallmarks of aging. Cell.153:1194-1217. DOI: 10.3389/fgene.2012.00277.
[48] H. E. Wheeler, S. K. Kim. (2011). Genetics and genomics of human ageing. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences.366:43-50. DOI: 10.3389/fgene.2012.00277.
[49] C. J. Kenyon. (2010). The genetics of ageing. Nature.464:504-512. DOI: 10.3389/fgene.2012.00277.
[50] E. L. Greer, P. R. Oskoui, M. R. Banko, J. M. Maniar. et al.(2007). The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. The Journal of Biological Chemistry.282:30107-30119. DOI: 10.3389/fgene.2012.00277.
[51] I. M. Overton, S. Graham, K. A. Gould, J. Hinds. et al.(2011). Global network analysis of drug tolerance, mode of action and virulence in methicillin-resistant S. aureus. BMC Systems Biology.5:68. DOI: 10.3389/fgene.2012.00277.
[52] A. D. Husom, E. A. Peters, E. A. Kolling, N. A. Fugere. et al.(2004). Altered proteasome function and subunit composition in aged muscle. Archives of Biochemistry and Biophysics.421:67-76. DOI: 10.3389/fgene.2012.00277.
[53] A. Ciechanover, P. Brundin. (2003). The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron.40:427-446. DOI: 10.3389/fgene.2012.00277.
[54] A.-L. Bulteau, L. I. Szweda, B. Friguet. (2002). Age-dependent declines in proteasome activity in the heart. Archives of Biochemistry and Biophysics.397:298-304. DOI: 10.3389/fgene.2012.00277.
[55] X. Yao, H. Hao, Y. Li, S. Li. et al.(2011). Modularity-based credible prediction of disease genes and detection of disease subtypes on the phenotype-gene heterogeneous network. BMC Systems Biology.5:79. DOI: 10.3389/fgene.2012.00277.
[56] G. Bindea, B. Mlecnik, H. Hackl, P. Charoentong. et al.(2009). ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics.25:1091-1093. DOI: 10.3389/fgene.2012.00277.
[57] R. Bouchi, K. S. Foo, H. Hua, K. Tsuchiya. et al.(2014). FOXO1 inhibition yields functional insulin-producing cells in human gut organoid cultures. Nature Communications.5:4242. DOI: 10.3389/fgene.2012.00277.
[58] M. V. Blagosklonny. (2013). Rapamycin extends life- and health span because it slows aging. Aging (Albany, New York).5:592-598. DOI: 10.3389/fgene.2012.00277.
[59] C. Kenyon. (2005). The plasticity of aging: insights from long-lived mutants. Cell.120:449-460. DOI: 10.3389/fgene.2012.00277.
[60] M. V. Blagosklonny. (2013). Aging is not programmed: genetic pseudo-program is a shadow of developmental growth. Cell Cycle.12:3736-3742. DOI: 10.3389/fgene.2012.00277.
[61] D. Vilchez, L. Boyer, I. Morantte, M. Lutz. et al.(2012). Increased proteasome activity in human embryonic stem cells is regulated by PSMD11. Nature.489:304-308. DOI: 10.3389/fgene.2012.00277.
[62] U. B. Pajvani, C. J. Shawber, V. T. Samuel, A. L. Birkenfeld. et al.(2011). Inhibition of notch signaling ameliorates insulin resistance in a FoxO1-dependent manner. Nature Medicine.17(8):961-967. DOI: 10.3389/fgene.2012.00277.
[63] T. N. Stitt, D. Drujan, B. A. Clarke, F. Panaro. et al.(2004). The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Molecular Cell.14:395-403. DOI: 10.3389/fgene.2012.00277.
[64] M. Sandri, J. Lin, C. Handschin, W. Yang. et al.(2006). PGC-1alpha protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proceedings of the National Academy of Sciences of the United States of America.103:16260-16265. DOI: 10.3389/fgene.2012.00277.
[65] J. J. Kim, P. Li, J. Huntley, J. P. Chang. et al.(2009). FoxO1 haploinsufficiency protects against high-fat diet-induced insulin resistance with enhanced peroxisome proliferator-activated receptor gamma activation in adipose tissue. Diabetes.58(6):1275-1282. DOI: 10.3389/fgene.2012.00277.
[66] E. A. Kikis, T. Gidalevitz, R. I. Morimoto. (2010). Protein homeostasis in models of aging and age-related conformational disease. Advances in Experimental Medicine and Biology.694:138-159. DOI: 10.3389/fgene.2012.00277.
[67] E. Jing, S. Gesta, C. R. Kahn. (2007). SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metabolism.6(2):105-114. DOI: 10.3389/fgene.2012.00277.
[68] E. M. Mercken, S. D. Crosby, D. W. Lamming, L. JeBailey. et al.(2013). Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell.12:645-651. DOI: 10.3389/fgene.2012.00277.
[69] M. Tatar, A. Kopelman, D. Epstein, M. P. Tu. et al.(2001). A mutant drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science (New York, New York).292:107-110. DOI: 10.3389/fgene.2012.00277.
[70] L. Fontana, L. Partridge, V. D. Longo. (2010). Extending healthy life span – from yeast to humans. Science.328:321-326. DOI: 10.3389/fgene.2012.00277.
[71] F. Pickford, E. Masliah, M. Britschgi, K. Lucin. et al.(2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. The Journal of Clinical Investigation.118:2190-2199. DOI: 10.3389/fgene.2012.00277.
[72] H. Matsuzaki, H. Daitoku, M. Hatta, H. Aoyama. et al.(2005). Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proceedings of the National Academy of Sciences of the United States of America.102(32):11278-11283. DOI: 10.3389/fgene.2012.00277.
[73] H. Daitoku, A. Fukamizu. (2007). FOXO transcription factors in the regulatory networks of longevity. Journal of Biochemistry.141(6):769-774. DOI: 10.3389/fgene.2012.00277.
[74] M. Beekman, C. Nederstigt, H. E. Suchiman, D. Kremer. et al.(2010). Genome-wide association study (GWAS)-identified disease risk alleles do not compromise human longevity. Proceedings of the National Academy of Sciences of the United States of America.107:18046-18049. DOI: 10.3389/fgene.2012.00277.
[75] E. Masiero, L. Agatea, C. Mammucari, B. Blaauw. et al.(2009). Autophagy is required to maintain muscle mass. Cell Metabolism.10:507-515. DOI: 10.3389/fgene.2012.00277.
[76] J. H. Lee, A. V. Budanov, E. J. Park, R. Birse. et al.(2010). Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science (New York, New York).327:1223-1228. DOI: 10.3389/fgene.2012.00277.
[77] C. V. Anselmi, A. Malovini, R. Roncarati, V. Novelli. et al.(2009). Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Research.12:95-104. DOI: 10.3389/fgene.2012.00277.
[78] A.-L. Hsu, C. T. Murphy, C. Kenyon. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science (New York, New York).300:1142-1145. DOI: 10.3389/fgene.2012.00277.
[79] M. Ekoff, T. Kaufmann, M. Engström, N. Motoyama. et al.(2007). The BH3-only protein puma plays an essential role in cytokine deprivation induced apoptosis of mast cells. Blood.110(9):3209-3217. DOI: 10.3389/fgene.2012.00277.
[80] X. C. Dong, K. D. Copps, S. Guo, Y. Li. et al.(2008). Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metabolism.8:65-76. DOI: 10.3389/fgene.2012.00277.
[81] J. A. Mattison, G. S. Roth, T. M. Beasley, E. M. Tilmont. et al.(2012). Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature.489:318-321. DOI: 10.3389/fgene.2012.00277.
[82] C. Kenyon, J. Chang, E. Gensch, A. Rudner. et al.(1993). A C. elegans mutant that lives twice as long as wild type. Nature.366:461-464. DOI: 10.3389/fgene.2012.00277.
[83] T. Kojima, H. Kamei, T. Aizu, Y. Arai. et al.(2004). Association analysis between longevity in the Japanese population and polymorphic variants of genes involved in insulin and insulin-like growth factor 1 signaling pathways. Experimental Gerontology.39:1595-1598. DOI: 10.3389/fgene.2012.00277.
[84] R. J. Colman, R. M. Anderson, S. C. Johnson, E. K. Kastman. et al.(2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science (New York, New York).325:201-204. DOI: 10.3389/fgene.2012.00277.
[85] N. Li, H. Luo, X. Liu, S. Ma. et al.(2016). Association study of polymorphisms in FOXO3, AKT1 and IGF-2R genes with human longevity in a Han Chinese population. Oncotarget.7:23-32. DOI: 10.3389/fgene.2012.00277.
[86] L. Sun, C. Hu, C. Zheng, Y. Qian. et al.(2015). FOXO3 variants are beneficial for longevity in southern Chinese living in the Red River basin: a case-control study and meta-analysis. Scientific Reports.5:9852. DOI: 10.3389/fgene.2012.00277.
[87] A. Sengupta, J. D. Molkentin, K. E. Yutzey. (2009). FoxO transcription factors promote autophagy in cardiomyocytes. The Journal of Biological Chemistry.284:28319-28331. DOI: 10.3389/fgene.2012.00277.
[88] S. D. Gopinath, A. E. Webb, A. Brunet, T. A. Rando. et al.(2014). FOXO3 promotes quiescence in adult muscle stem cells during the process of self-renewal. Stem Cell Reports.2(4):414-426. DOI: 10.3389/fgene.2012.00277.
[89] R. Hitt, Y. Young-Xu, M. Silver, T. Perls. et al.(1999). Centenarians: the older you get, the healthier you have been. Lancet.354:652. DOI: 10.3389/fgene.2012.00277.
[90] Y. Zeng, L. Cheng, H. Chen, H. Cao. et al.(2010). Effects of FOXO genotypes on longevity: a biodemographic analysis. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.65:1285-1299. DOI: 10.3389/fgene.2012.00277.
[91] J. F. Fries. (1980). Aging, natural death, and the compression of morbidity. The New England Journal of Medicine.303:130-135. DOI: 10.3389/fgene.2012.00277.
[92] C. Skurk, H. Maatz, H. S. Kim, J. Yang. et al.(2004). The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. The Journal of Biological Chemistry.279(2):1513-1525. DOI: 10.3389/fgene.2012.00277.
[93] F. Demontis, N. Perrimon. (2010). FOXO/4E-BP signaling in drosophila muscles regulates organism-wide proteostasis during aging. Cell.143:813-825. DOI: 10.3389/fgene.2012.00277.
[94] A. van der Horst, B. M. Burgering. (2007). Stressing the role of FoxO proteins in lifespan and disease. Nature Reviews Molecular Cell Biology.8(6):440-450. DOI: 10.3389/fgene.2012.00277.
[95] J. Zhao, J. J. Brault, A. Schild, P. Cao. et al.(2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metabolism.6:472-483. DOI: 10.3389/fgene.2012.00277.
[96] B. J. Morris, D. C. Willcox, T. A. Donlon, B. J. Willcox. et al.(2015). FOXO3: a major gene for human longevity - a mini-review. Gerontology.61:515-525. DOI: 10.3389/fgene.2012.00277.
[97] F. Zanella, W. Link, A. Carnero. (2010). Understanding FOXO, new views on old transcription factors. Current Cancer Drug Targets.10:135-146. DOI: 10.3389/fgene.2012.00277.
[98] S. L. Andersen, P. Sebastiani, D. A. Dworkis, L. Feldman. et al.(2012). Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.67:395-405. DOI: 10.3389/fgene.2012.00277.
[99] Y. Li, W.-J. J. Wang, H. Cao, J. Lu. et al.(2009). Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Human Molecular Genetics.18:4897-4904. DOI: 10.3389/fgene.2012.00277.
[100] G. Tuteja, K. H. Kaestner. (2007). Forkhead transcription factors II. Cell.131:192. DOI: 10.3389/fgene.2012.00277.
[101] G. Tuteja, K. H. Kaestner. (2007). Forkhead transcription factors I. Cell.130:1160. DOI: 10.3389/fgene.2012.00277.
[102] B. J. Willcox, T. A. Donlon, Q. He, R. Chen. et al.(2008). FOXO3A genotype is strongly associated with human longevity. Proceedings of the National Academy of Sciences of the United States of America.105:13987-13992. DOI: 10.3389/fgene.2012.00277.
文献评价指标
浏览 62次
下载全文 13次
评分次数 0次
用户评分 0.0分
分享 13次