首页 » 文章 » 文章详细信息
Brain and Behavior Volume 7 ,Issue 5 ,2017-04-04
Valence and magnitude ambiguity in feedback processing
ORIGINAL RESEARCH
Ruolei Gu 1 , 2 , 3 Xue Feng 4 Lucas S. Broster 5 Lu Yuan 6 , 7 Pengfei Xu 6 , 8 , 9 Yue‐jia Luo 6 , 8
Show affiliations
DOI:10.1002/brb3.672
Received 2016-08-29, accepted for publication 2017-01-25, Published 2017-01-25
PDF
摘要

Abstract Background Outcome feedback which indicates behavioral consequences are crucial for reinforcement learning and environmental adaptation. Nevertheless, outcome information in daily life is often totally or partially ambiguous. Studying how people interpret this kind of information would provide important knowledge about the human evaluative system. Methods This study concentrates on the neural processing of partially ambiguous feedback, that is, either its valence or magnitude is unknown to participants. To address this topic, we sequentially presented valence and magnitude information; electroencephalography (EEG) response to each kind of presentation was recorded and analyzed. The event‐related potential components feedback‐related negativity (FRN) and P3 were used as indices of neural activity. Results Consistent with previous literature, the FRN elicited by ambiguous valence was not significantly different from that elicited by negative valence. On the other hand, the FRN elicited by ambiguous magnitude was larger than both the large and small magnitude, indicating the motivation to seek unambiguous magnitude information. The P3 elicited by ambiguous valence and ambiguous magnitude was not significantly different from that elicited by negative valence and small magnitude, respectively, indicating the emotional significance of feedback ambiguity. Finally, the aforementioned effects also manifested in the stage of information integration. Conclusion These findings indicate both similarities and discrepancies between the processing of valence ambiguity and that of magnitude ambiguity, which may help understand the mechanisms of ambiguous information processing.

关键词

P3;feedback‐related negativity;event‐related potential;decision‐making;ambiguous feedback

授权许可

© 2017 Published by Wiley Periodicals, Inc.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Xue Feng.Key Laboratory of Modern Teaching Technology of Ministry of Education, Shaanxi Normal University, Xi'an, China.fengxue@snnu.edu.cn

推荐引用方式

Ruolei Gu,Xue Feng,Lucas S. Broster,Lu Yuan,Pengfei Xu,Yue‐jia Luo. Valence and magnitude ambiguity in feedback processing. Brain and Behavior ,Vol.7, Issue 5(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Hajcak, G., Moser, J. S., Holroyd, C. B., & Simons, R. F. (2006). The feedback‐related negativity reflects the binary evaluation of good versus bad outcomes. Biological Psychology, 71, 148–154. doi:10.1016/j.biopsycho.2005.04.001
[2] Polich, J., & Kok, A. (1995). Cognitive and biological determinants of P300: An integrative review. Biological Psychology, 41, 103–146. doi:10.1016/0301‐0511(95)05130‐9
[3] Polich, J. (1990). Probability and inter‐stimulus interval effects on the P300 from auditory stimuli. International Journal of Psychophysiology, 10, 163–170. doi:10.1016/0167‐8760(90)90030‐H
[4] Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation. Psychophysiology, 50, 550–562. doi:10.1111/psyp.12040
[5] Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. (2015). Emotion and decision making. Annual Review of Psychology, 66, 799–823. doi:10.1146/annurev‐psych‐010213‐115043
[6] Zhang, D., Gu, R., Wu, T., Broster, L. S., Luo, Y., Jiang, Y., & Luo, Y. J. (2013). An electrophysiological index of changes in risk decision‐making strategies. Neuropsychologia, 51, 1397–1407. doi:10.1016/j.neuropsychologia.2013.04.014
[7] Huang, Y. X., Bai, L., Ai, H., Li, W., Yua, C., Liu, J., & Luo, Y. J. (2009). Influence of trait‐anxiety on inhibition function: Evidence from ERPs study. Neuroscience Letters, 456(1), 1–5. doi:10.1016/j.neulet.2009.03.072
[8] Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision‐making. Science, 310, 1680–1683. doi:10.1126/science.1115327
[9] Chinander, K. R., & Schweitzer, M. E. (2003). The input bias: The misuse of input information in judgments of outcomes. Organizational Behavior and Human Decision Processes, 91, 243–253. doi:10.1016/S0749‐5978(03)00025‐6
[10] Zhukov, L., Weinstein, D., & Johnson, C. (2000). Independent component analysis for EEG source localization. IEEE Engineering in Medicine and Biology Magazine, 19, 87–96. doi:10.1109/51.844386
[11] Cohen, J. (1973). Eta‐squared and partial eta‐squared in fixed factor ANOVA designs. Educational and Psychological Measurement, 33, 107–112. doi:10.1177/001316447303300111
[12] Constans, J. I., Penn, D. L., Ihen, G. H., & Hope, D. A. (1999). Interpretive biases for ambiguous stimuli in social anxiety. Behaviour Research and Therapy, 37, 643–651. doi:10.1016/S0005‐7967(98)00180‐6
[13] Heath, C., & Tversky, A. (1991). Preference and belief: Ambiguity and competence in choice under uncertainty. Journal of Risk and Uncertainty, 4, 5–28. doi:10.1007/BF00057884
[14] Richards, A., French, C. C., Calder, A. J., Webb, B., Fox, R., & Young, A. W. (2002). Anxiety‐related bias in the classification of emotionally ambiguous facial expressions. Emotion, 2, 273–287. doi:10.1037/1528‐3542.2.3.273
[15] Price, M., Handley, K., Millar, J., & O'Donovan, B. (2010). Feedback: All that effort, but what is the effect? Assessment & Evaluation in Higher Education, 35, 277–289. doi:10.1080/02602930903541007
[16] Platt, M. L., & Huettel, S. A. (2008). Risky business: The neuroeconomics of decision making under uncertainty. Nature Neuroscience, 11, 398–403. doi:10.1038/nn2062
[17] Polezzi, D., Lotto, L., Daum, I., Sartori, G., & Rumiati, R. (2008). Predicting outcomes of decisions in the brain. Behavioural Brain Research, 187, 116–122. doi:10.1016/j.bbr.2007.09.001
[18] Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Cognitive Neuroscience, 20, 2058–2069. doi:10.1162/jocn.2008.20134
[19] Luck, S. J., & Gaspelin, N. (2016). How to get statistically significant effects in any ERP experiment (and why you shouldn't). Psychophysiology, 54, 146–157. doi:10.1111/psyp.12639
[20] Gu, R., Ge, Y., Jiang, Y., & Luo, Y. J. (2010). Anxiety and outcome evaluation: The good, the bad and the ambiguous. Biological Psychology, 85, 200–206. doi:10.1016/j.biopsycho.2010.07.001
[21] Litt, A., Plassmann, H., Shiv, B., & Rangel, A. (2011). Dissociating valuation and saliency signals during decision‐making. Cerebral Cortex, 21, 95–102. doi:10.1093/cercor/bhq065
[22] Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W. (2010). Neural representation of subjective value under risk and ambiguity. Journal of Neurophysiology, 103, 1036–1047. doi:10.1152/jn.00853.2009
[23] Becker, M. P., Nitsch, A. M., Miltner, W. H., & Straube, T. (2014). A single‐trial estimation of the feedback‐related negativity and its relation to BOLD responses in a time‐estimation task. The Journal of Neuroscience, 34, 3005–3012. doi:10.1523/JNEUROSCI.3684‐13.2014
[24] Li, P., Baker, T. E., Warren, C., & Li, H. (2016). Oscillatory profiles of positive, negative and neutral feedback stimuli during adaptive decision making. International Journal of Psychophysiology, 107, 37–43. doi:10.1016/j.ijpsycho.2016.06.018
[25] Berns, G. S., & Bell, E. (2012). Striatal topography of probability and magnitude information for decisions under uncertainty. NeuroImage, 59, 3166–3172. doi:10.1016/j.neuroimage.2011.11.008
[26] Blanchette, I., & Richards, A. (2003). Anxiety and the interpretation of ambiguous information: Beyond the emotion‐congruent effect. Journal of Experimental Psychology: General, 132, 294–309. doi:10.1037/0096‐3445.132.2.294
[27] Camerer, C. (1995). Individual decision making. In , & A. E. Roth (Eds.), Handbook of experimental economics (pp. 587–703). Princeton, NJ: Princeton University Press.
[28] Gu, R., Lei, Z., Broster, L., Wu, T., Jiang, Y., & Luo, Y. J. (2011). Beyond valence and magnitude: A flexible evaluative coding system in the brain. Neuropsychologia, 49, 3891–3897. doi:10.1016/j.neuropsychologia.2011.10.006
[29] Polezzi, D., Sartori, G., Rumiati, R., Vidotto, G., & Daum, I. (2010). Brain correlates of risky decision‐making. NeuroImage, 49, 1886–1894. doi:10.1016/j.neuroimage.2009.08.068
[30] Pfabigan, D. M., Alexopoulos, J., Bauer, H., & Sailer, U. (2010). Manipulation of feedback expectancy and valence induces negative and positive reward prediction error signals manifest in event‐related brain potentials. Psychophysiology, 48, 656–664. doi:10.1111/j.1469‐8986.2010.01136.x
[31] Feng, X., Gu, R., Liang, F., Broster, L. S., Liu, Y., Zhang, D., & Luo, Y. J. (2015). Depressive states amplify both upward and downward counterfactual thinking. International Journal of Psychophysiology, 97, 93–98. doi:10.1016/j.ijpsycho.2015.04.016
[32] Luo, Y., Wu, T., Broster, L. S., Feng, C., Zhang, D., Gu, R., & Luo, Y. J. (2014). The temporal course of the influence of anxiety on fairness considerations. Psychophysiology, 51, 834–842. doi:10.1111/psyp.12235
[33] Ernst, B., & Steinhauser, M. (2015). Effects of invalid feedback on learning and feedback‐related brain activity in decision‐making. Brain and Cognition, 99, 78–86. doi:10.1016/j.bandc.2015.07.006
[34] Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event‐related brain potentials following incorrect feedback in a time‐estimation task: Evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798. doi:10.1162/jocn.1997.9.6.788
[35] Meadows, C. C., Gable, P. A., Lohse, K. R., & Miller, M. W. (2016). The effects of reward magnitude on reward processing: An averaged and single trial event‐related potential study. Biological Psychology, 118, 154–160. doi:10.1016/j.biopsycho.2016.06.002
[36] Amir, N., Beard, C., & Bower, E. (2005). Interpretation bias and social anxiety. Cognitive Therapy and Research, 29, 433–443. doi:10.1007/s10608‐005‐2834‐5
[37] Gibbons, H., Schnuerch, R., & Stahl, J. (2016). From positivity to negativity bias: Ambiguity affects the neurophysiological signatures of feedback processing. Journal of Cognitive Neuroscience, 4, 542–557. doi:10.1162/jocn_a_00921
[38] American Psychological Association (2002). Ethical principles of psychologists and code of conduct. American Psychologist, 57, 1060–1073.
[39] Bauer, L. O., Costa, L., & Hesselbrock, V. M. (2001). Effects of alcoholism, anxiety and depression on P300 in women: A pilot study. Journal of Studies on Alcohol, 62, 571–579. doi:10.15288/jsa.2001.62.571
[40] Gehring, W. J., & Willoughby, A. R. (2002). The medial frontal cortex and the rapid processing of monetary gains and losses. Science, 295, 2279–2282. doi:10.1126/science.1066893
[41] Pfabigan, D. M., Zeiler, M., Lamm, C., & Sailer, U. (2014). Blocked versus randomized presentation modes differentially modulate feedback‐related negativity and P3b amplitudes. Clinical Neurophysiology, 125, 715–726. doi:10.1016/j.clinph.2013.09.029
[42] Philiastides, M. G., Biele, G., Vavatzanidis, N., Kazzer, P., & Heekeren, H. R. (2010). Temporal dynamics of prediction error processing during reward‐based decision making. NeuroImage, 53, 221–232. doi:10.1016/j.neuroimage.2010.05.052
[43] Ho, J. L., Keller, L. R., & Keltyka, P. (2002). Effects of outcome and probabilistic ambiguity on managerial choices. Journal of Risk and Uncertainty, 24, 47–74. doi:10.1023/A:1013277310399
[44] Herbert, M., Eppinger, B., & Kray, J. (2011). Younger but not older adults benefit from salient feedback during learning. Frontiers in Psychology, 2, 171. doi:10.3389/fpsyg.2011.00171
[45] Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error‐related negativity. Psychological Review, 109, 679–709. doi:10.1037/0033‐295X.109.4.679
[46] Myers, C. E., Moustafa, A. A., Sheynin, J., VanMeenen, K. M., Gilbertson, M. W., Orr, S. P., & Servatius, R. J. (2013). Learning to obtain reward, but not avoid punishment, is affected by presence of PTSD symptoms in male veterans: Empirical data and computational model. PLoS One, 8, e72508. doi:10.1371/journal.pone.0072508
[47] Hirsh, J. B., & Inzlicht, M. (2008). The devil you know: Neuroticism predicts neural response to uncertainty. Psychological Science, 19, 962–967. doi:10.1111/j.1467‐9280.2008.02183.x
[48] Holroyd, C. B., Hajcak, G., & Larsen, J. T. (2006). The good, the bad and the neutral: Electrophysiological responses to feedback stimuli. Brain Research, 1105, 93–101. doi:10.1016/j.brainres.2005.12.015
[49] Zhang, D., Gu, R., Broster, L. S., Jiang, Y., Luo, W., Zhang, J., & Luo, Y. J. (2014). Linking brain electrical signals elicited by current outcomes with future risk decision‐making. Frontiers in Behavioral Neuroscience, 8, 84. doi:10.3389/fnbeh.2014.00084
[50] Wu, Y., & Zhou, X. L. (2009). The P300 and reward valence, magnitude, and expectancy in outcome evaluation. Brain Research, 1286, 114–122. doi:10.1016/j.brainres.2009.06.032
[51] Donchin, E., Ritter, W., & McCallum, W. C. (1978). Cognitive psychophysiology: The endogenous components of the ERP. In , P. Tueting, & S. Koslow (Eds.), Event‐related brain potentials in man (pp. 349–411). New York, NY: Academic Press.
[52] Yeung, N., & Sanfey, A. G. (2004). Independent coding of reward magnitude and valence in the human brain. Journal of Neuroscience, 24, 6258–6264. doi:10.1523/JNEUROSCI.4537‐03.2004
[53] Sambrook, T. D., & Goslin, J. (2015). A neural reward prediction error revealed by a meta‐analysis of ERPs using great grand averages. Psychological Bulletin, 141, 213–235. doi:10.1037/bul0000006
[54] Moustafa, A. A., Gluck, M. A., Herzallah, M. M., & Myers, C. E. (2015). The influence of trial order on learning from reward vs. punishment in a probabilistic categorization task: Experimental and computational analyses. Frontiers in Behavioral Neuroscience, 9, 153. doi:10.3389/fnbeh.2015.00153
[55] Holroyd, C. B., Larsen, J. T., & Cohen, J. D. (2004). Context dependence of the event‐related brain potential associated with reward and punishment. Psychophysiology, 41, 245–253. doi:10.1111/j.1469‐8986.2004.00152.x
[56] Muller, S. V., Moller, J., Rodriguez‐Fornells, A., & Munte, T. F. (2005). Brain potentials related to self‐generated and external information used for performance monitoring. Clinical Neurophysiology, 116, 63–74. doi:10.1016/j.clinph.2004.07.009
[57] Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695–703. doi:10.1111/j.1469‐8986.1986.tb00696.x
[58] Walsh, M. M., & Anderson, J. R. (2012). Learning from experience: Event‐related potential correlates of reward processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews, 36, 1870–1884. doi:10.1016/j.neubiorev.2012.05.008
[59] Dykman, B. M., & Volpicelli, J. R. (1983). Depression and negative processing of evaluative feedback. Cognitive Therapy and Research, 7, 485–498. doi:10.1007/BF01172887
[60] Ernst, M., & Paulus, M. P. (2005). Neurobiology of decision making: A selective review from a neurocognitive and clinical perspective. Biological Psychiatry, 58, 597–604. doi:10.1016/j.biopsych.2005.06.004
[61] Morone, A., & Ozdemir, O. (2012). Displaying uncertain information about probability: Experimental evidence. Bulletin of Economic Research, 64, 157–171. doi:10.1111/j.1467‐8586.2010.00380.x
[62] Nieuwenhuis, S., Yeung, N., Holroyd, C. B., Schurger, A., & Cohen, J. D. (2004). Sensitivity of electrophysiological activity from medial frontal cortex to utilitarian and performance feedback. Cerebral Cortex, 14, 741–747. doi:10.1093/cercor/bhh034
[63] Paton, J. J., Belova, M. A., Morrison, S. E., & Salzman, C. D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature, 439, 865–870. doi:10.1038/nature04490
[64] Holroyd, C. B., Baker, T. E., Kerns, K. A., & Muller, U. (2008). Electrophysiological evidence of atypical motivation and reward processing in children with attention‐deficit hyperactivity disorder. Neuropsychologia, 46, 2234–2242. doi:10.1016/j.neuropsychologia.2008.02.011
[65] Payzan‐LeNestour, E., & Bossaerts, P. (2011). Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings. PLoS Computational Biology, 7(1), e1001048. doi:10.1371/journal.pcbi.1001048
文献评价指标
浏览 52次
下载全文 22次
评分次数 0次
用户评分 0.0分
分享 0次