首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2017 ,2017-08-09
Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012)
Research Article
Hao Zhang 1 , 2 Jian Sun 2 Junnan Xiong 1
Show affiliations
DOI:10.1155/2017/7082606
Received 2017-01-22, accepted for publication 2017-07-05, Published 2017-07-05
PDF
摘要

Evapotranspiration (ET) is a key factor to further our understanding of climate change processes, especially on the Tibetan Plateau, which is sensitive to global change. Herein, the spatial patterns of ET are examined, and the effects of environmental factors on ET at different scales are explored from the years 2000 to 2012. The results indicated that a steady trend in ET was detected over the past decade. Meanwhile, the spatial distribution shows an increase of ET from the northwest to the southeast, and the rate of change in ET is lower in the middle part of the Tibetan Plateau. Besides, the positive effect of radiation on ET existed mainly in the southwest. Based on the environment gradient transects, the ET had positive correlations with temperature (R>0.85, p 0.89, p 0.75, p < 0.0001), but a negative correlation between ET and radiation (R = 0.76, p < 0.0001) was observed. We also found that the relationships between environmental factors and ET differed in the different grassland ecosystems, which indicated that vegetation type is one factor that can affect ET. Generally, the results indicate that ET can serve as a valuable ecological indicator.

授权许可

Copyright © 2017 Hao Zhang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The study area across Tibetan Plateau. The ecosystems contained alpine meadow, alpine steppe, desert steppe, and forest.

Temporal patterns of ET across the Tibetan Plateau. Graphs (a) and (b) represent variation ET of months January–December and years 2000–2012, respectively.

Temporal patterns of ET across the Tibetan Plateau. Graphs (a) and (b) represent variation ET of months January–December and years 2000–2012, respectively.

Spatial patterns and dynamics of ET across the Tibetan Plateau. Graphs (a) and (b) represent distribution and variation of ET, respectively.

Spatial patterns and dynamics of ET across the Tibetan Plateau. Graphs (a) and (b) represent distribution and variation of ET, respectively.

Responses of ET to variation of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively.

Responses of ET to variation of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively.

Responses of ET to variation of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively.

Responses of ET to variation of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively.

The significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variations with temperature, precipitation, radiation, and NDVI, respectively.

The significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variations with temperature, precipitation, radiation, and NDVI, respectively.

The significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variations with temperature, precipitation, radiation, and NDVI, respectively.

The significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variations with temperature, precipitation, radiation, and NDVI, respectively.

The percentage of significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively. Furthermore, alpine meadow, forest, desert steppe, and alpine steppe are represented by AM, F, DS, and AS, respectively.

The percentage of significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively. Furthermore, alpine meadow, forest, desert steppe, and alpine steppe are represented by AM, F, DS, and AS, respectively.

The percentage of significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively. Furthermore, alpine meadow, forest, desert steppe, and alpine steppe are represented by AM, F, DS, and AS, respectively.

The percentage of significant changes of ET with four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the variation with temperature, precipitation, radiation, and NDVI, respectively. Furthermore, alpine meadow, forest, desert steppe, and alpine steppe are represented by AM, F, DS, and AS, respectively.

The typical environment gradients of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the gradients of temperature, precipitation, radiation, and NDVI, respectively.

The typical environment gradients of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the gradients of temperature, precipitation, radiation, and NDVI, respectively.

The typical environment gradients of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the gradients of temperature, precipitation, radiation, and NDVI, respectively.

The typical environment gradients of four environmental factors across the Tibetan Plateau. Graphs (a), (b), (c), and (d) represent the gradients of temperature, precipitation, radiation, and NDVI, respectively.

Relationship of three environmental factors with ET. Graphs (a)(A) and (a)(B) represent the relationship between ET with temperature in temperature gradients a and b; graphs (b)(A) and (b)(B) with precipitation in precipitation gradients a and b; and graphs (c)(A) and (c)(B) with radiation in radiation gradients a and b, respectively.

Relationship of three environmental factors with ET. Graphs (a)(A) and (a)(B) represent the relationship between ET with temperature in temperature gradients a and b; graphs (b)(A) and (b)(B) with precipitation in precipitation gradients a and b; and graphs (c)(A) and (c)(B) with radiation in radiation gradients a and b, respectively.

Relationship of three environmental factors with ET. Graphs (a)(A) and (a)(B) represent the relationship between ET with temperature in temperature gradients a and b; graphs (b)(A) and (b)(B) with precipitation in precipitation gradients a and b; and graphs (c)(A) and (c)(B) with radiation in radiation gradients a and b, respectively.

Relationship of NDVI with ET.

通讯作者

1. Jian Sun.Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, cas.cn.sunjian@igsnrr.ac.cn
2. Junnan Xiong.School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China, swpu.edu.cn.neu_xjn@163.com

推荐引用方式

Hao Zhang,Jian Sun,Junnan Xiong. Spatial-Temporal Patterns and Controls of Evapotranspiration across the Tibetan Plateau (2000–2012). Advances in Meteorology ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
18

是否收藏?

参考文献
[1] W. Brutsaert. (2005). Hydrology. DOI: 10.1111/gcb.12324.
[2] G. Miehe, K. Bach, S. Miehe, J. Kluge. et al.(2011). Alpine steppe plant communities of the Tibetan highlands. Applied Vegetation Science.14(4):547-560. DOI: 10.1111/gcb.12324.
[3] T. Oki, S. Kanae. (2006). Global hydrological cycles and world water resources. Science.313(5790):1068-1072. DOI: 10.1111/gcb.12324.
[4] K. Zhang, J. S. Kimball, R. R. Nemani, S. W. Running. et al.(2010). A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resources Research.46(9). DOI: 10.1111/gcb.12324.
[5] S. Wu, Y. Yin, D. Zheng, Q. Yang. et al.(2007). Climatic trends over the Tibetan Plateau during 1971-2000. Journal of Geographical Sciences.17(2):141-151. DOI: 10.1111/gcb.12324.
[6] J. Li, S. Jiang, B. Wang, W.-W. Jiang. et al.(2013). Evapotranspiration and its energy exchange in alpine meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Integrative Agriculture.12(8):1396-1401. DOI: 10.1111/gcb.12324.
[7] G. Miehe, S. Miehe, K. Bach, J. Nölling. et al.(2011). Plant communities of central Tibetan pastures in the Alpine Steppe/Kobresia pygmaea ecotone. Journal of Arid Environments.75(8):711-723. DOI: 10.1111/gcb.12324.
[8] Q. Mu, F. A. Heinsch, M. Zhao, S. W. Running. et al.(2007). Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sensing of Environment.111(4):519-536. DOI: 10.1111/gcb.12324.
[9] N. Shan, Z. Shi, X. Yang, J. Gao. et al.(2015). Spatiotemporal trends of reference evapotranspiration and its driving factors in the Beijing-Tianjin Sand Source Control Project Region, China. Agricultural and Forest Meteorology.200:322-333. DOI: 10.1111/gcb.12324.
[10] R. G. Allen, L. S. Pereira, T. A. Howell, M. E. Jensen. et al.(2011). Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agricultural Water Management.98(6):899-920. DOI: 10.1111/gcb.12324.
[11] A. Hammerle, A. Haslwanter, U. Tappeiner, A. Cernusca. et al.(2008). Leaf area controls on energy partitioning of a temperate mountain grassland. Biogeosciences.5(2):421-431. DOI: 10.1111/gcb.12324.
[12] S.-G. Li, C.-T. Lai, G. Lee, S. Shimoda. et al.(2005). Evapotranspiration from a wet temperate grassland and its sensitivity to micro-environmental variables. Hydrological Processes.19(2):517-532. DOI: 10.1111/gcb.12324.
[13] L. A. Wever, L. B. Flanagan, P. J. Carlson. (2002). Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agricultural and Forest Meteorology.112(1):31-49. DOI: 10.1111/gcb.12324.
[14] X. Li, S. Liang, W. Yuan, G. Yu. et al.(2014). Estimation of evapotranspiration over the terrestrial ecosystems in China. Ecohydrology.7(1):139-149. DOI: 10.1111/gcb.12324.
[15] S. Wang, T. Yao. (1998). Construction of mean annual temperature series for the last one hundred years in China. Quarterly Journal of Applied Meteorlolgy. DOI: 10.1111/gcb.12324.
[16] L. Song, Y. Yin, W. U. Shaohong. (2012). Advancements of the Metrics of Evapotranspiration , Progress in Geography. Advancements of the Metrics of Evapotranspiration , Progress in Geography.9:1186-1195. DOI: 10.1111/gcb.12324.
[17] Y. Yin, S. Wu, D. Zhao, D. Zheng. et al.(2013). Modeled effects of climate change on actual evapotranspiration in different eco-geographical regions in the Tibetan Plateau. Journal of Geographical Sciences.23(2):195-207. DOI: 10.1111/gcb.12324.
[18] M. Rodell, J. S. Famiglietti, J. Chen, S. I. Seneviratne. et al.(2004). Basin scale estimates of evapotranspiration using GRACE and other observations. Geophysical Research Letters.31(20). DOI: 10.1111/gcb.12324.
[19] R. Nemani, M. White, P. Thornton, K. Nishida. et al.(2002). Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophysical Research Letters.10:106-1-106-4. DOI: 10.1111/gcb.12324.
[20] G. M. Hornberger. (1998). Elements of physical hydrology. DOI: 10.1111/gcb.12324.
[21] K. C. Wang, R. E. Dickinson. (2012). A review of global terrestrial evapotranspiration: observation, modeling, climatology, and climatic variability. Reviews of Geophysics.50(2). DOI: 10.1111/gcb.12324.
[22] J. Li, S. Wang, Y. Li, K. Shang. et al.(2013). The Evaporation Variation and Its Influence Factors in Xi'ning of Qinghai Province. Journal of Arid Meteorology. DOI: 10.1111/gcb.12324.
[23] Z. T. Cong, D. W. Yang, G. H. Ni. (2009). Does evaporation paradox exist in China?. Hydrology Earth System Sciences Discussions.4:357-366. DOI: 10.1111/gcb.12324.
[24] Z. Liu, K. G. Hubbard, X. Lin, X. Yang. et al.(2013). Negative effects of climate warming on maize yield are reversed by the changing of sowing date and cultivar selection in Northeast China. Global Change Biology.19(11):3481-3492. DOI: 10.1111/gcb.12324.
[25] J. Xie, X. Wei, C. Zhang, Y. U. Xiujing. et al.(2013). Spatiotemporal variation characteristics and related affecting factors of actual evapotranspiration in the second tributary of the Songhua and River basin, Northeast China. CJE. DOI: 10.1111/gcb.12324.
[26] Q. I. Wen-Wen, B. P. Zhang, P. Yu, F. Zhao. et al.(2013). TRMM-Data-Based Spatial and Seasonal Patterns of Precipitation in the Qinghai-Tibet Plateau. Scientia Geographica Sinica.8:999-1005. DOI: 10.1111/gcb.12324.
[27] S. Wen, T. Jiang, X. Li, T. Wang. et al.(1961). Changes of actual evapotranspiration over the songhua river basin from 1961 to 2010. Progressus Inquisitiones De Mutatione Climatis.2:79-86. DOI: 10.1111/gcb.12324.
[28] S. Gu, Y. H. Tang, X. Y. Cui. (2008). Characterizing evapotranspiration over a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research: Atmospheres.113:693-702. DOI: 10.1111/gcb.12324.
[29] H. Xie, X. Zhu. (2013). Reference evapotranspiration trends and their sensitivity to climatic change on the Tibetan Plateau (1970–2009). Hydrological Processes.27(25):3685-3693. DOI: 10.1111/gcb.12324.
[30] X. Mei, B. Shen, M. O. Shuhong. (2012). Cause analysis of annual variation of evapotranspiration in guanzhong region. Water Resources & Power. DOI: 10.1111/gcb.12324.
[31] J. Sun, G. W. Cheng, W. P. Li. (2013). Meta-analysis of relationships between environmental factors and aboveground biomass in the alpine grassland on the Tibetan Plateau. Biogeosciences.10(3):1707-1715. DOI: 10.1111/gcb.12324.
[32] L. Yongchao. (2005). Review on Impact of Climate Change on Water Resources System in the Upper Reaches of Yellow River. Advances in Climate Change Research.2:310-313. DOI: 10.1111/gcb.12324.
[33] Q. Mu, M. Zhao, F. A. Heinsch, M. Liu. et al.(2007). Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. Journal of Geophysical Research: Biogeosciences.112(1). DOI: 10.1111/gcb.12324.
[34] Z. Li, R. Tang, Z. Wan, Y. Bi. et al.(2009). A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors.9(5):3801-3853. DOI: 10.1111/gcb.12324.
[35] Y. Liu, Q. Zhuang, M. Chen, Z. Pan. et al.(2013). Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Global and Planetary Change.108:85-99. DOI: 10.1111/gcb.12324.
[36] H. Yang, P. Luo, J. Wang, C. Mou. et al.(2015). Ecosystem evapotranspiration as a response to climate and vegetation coverage changes in Northwest Yunnan, China. PLoS ONE.10(8). DOI: 10.1111/gcb.12324.
[37] M. Jung, M. Reichstein, P. Ciais, S. I. Seneviratne. et al.(2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature.467(7318):951-954. DOI: 10.1111/gcb.12324.
[38] B.-L. Xue, L. Wang, X. Li, K. Yang. et al.(2013). Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. Journal of Hydrology.492:290-297. DOI: 10.1111/gcb.12324.
[39] J. Sun, G. D. Salvucci, D. Entekhabi. (2012). Estimates of evapotranspiration from MODIS and AMSR-E land surface temperature and moisture over the Southern Great Plains. Remote Sensing of Environment.127:44-59. DOI: 10.1111/gcb.12324.
[40] A. Bandyopadhyay, A. Bhadra, N. S. Raghuwanshi, R. Singh. et al.(2009). Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering.14(5):508-515. DOI: 10.1111/gcb.12324.
[41] M. L. Roderick, G. D. Farquhar. (2004). Changes in Australian pan evaporation from 1970 to 2002. International Journal of Climatology.24(9):1077-1090. DOI: 10.1111/gcb.12324.
[42] F. U. Yang. (2010). Countermeasures for Qinghai-Tibet Plateau to Cope with Climate Change and Ecological Environment Safety. Journal of Anhui Agricultural Sciences. DOI: 10.1111/gcb.12324.
[43] M. L. Roderick, G. D. Farquhar. (2002). The cause of decreased pan evaporation over the past 50 years. Science.298(5597):1410-1411. DOI: 10.1111/gcb.12324.
[44] Q. I. Wen-Wen, B. P. Zhang, Y. Pang, F. Zhao. et al.(2013). TRMM-data-based spatial and seasonal patterns of precipitation in the qinghai-tibet plateau. Scientia Geographica Sinica.8:999-1005. DOI: 10.1111/gcb.12324.
[45] J. Feng, D. Yan, C. Li, F. Yu. et al.(2014). Assessing the impact of climatic factors on potential evapotranspiration in droughts in North China. Quaternary International.336:6-12. DOI: 10.1111/gcb.12324.
[46] M. D. Vivarelli, M. D. Vivarelli. (1997). Ice core study--the past, the present and the future. Chinese Science Bulletin.13:1057-1064. DOI: 10.1111/gcb.12324.
[47] J. Sun, X. Qin, J. Yang. (2016). The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environmental Monitoring and Assessment.188(1, article 20). DOI: 10.1111/gcb.12324.
[48] H. Tabari, A. Aeini, P. H. Talaee, B. S. Some'e. et al.(2012). Spatial distribution and temporal variation of reference evapotranspiration in arid and semi-arid regions of Iran. Hydrological Processes.26(4):500-512. DOI: 10.1111/gcb.12324.
[49] T. A. Paço, T. S. David, M. O. Henriques, J. S. Pereira. et al.(2009). Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture. Journal of Hydrology.369(1-2):98-106. DOI: 10.1111/gcb.12324.
[50] X. Zhao, W. Wan, W. Wang. (2016). Impact of climate change on potential productivity and phenological phase of forage in the Qinghai-Tibet Plateau in the past 50 years. Chinese Journal of Eco-Agriculture.4:532-543. DOI: 10.1111/gcb.12324.
[51] S. Liu, S. Li, G. Yu, X. Sun. et al.(2009). Surface energy exchanges above two grassland ecosystems on the Qinghai-Tibetan Plateau. Biogeosciences Discussions.6(5):9161-9192. DOI: 10.1111/gcb.12324.
[52] W. Sanford, D. L. Selnick. (2013). Estimation of evapotranspiration across the conterminous united states using a regression with climate and land-cover data. Journal of the American Water Resources Association.49(1):217-230. DOI: 10.1111/gcb.12324.
[53] Y. Zhang, C. Liu, Y. Tang, Y. Yang. et al.(2007). Trends in pan evaporation and reference and actual evapotranspiration across the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres.112(12). DOI: 10.1111/gcb.12324.
[54] Q. You, J. Min, W. Zhang, N. Pepin. et al.(2015). Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Climate Dynamics.45(3-4):791-806. DOI: 10.1111/gcb.12324.
[55] C.-Y. Xu, D. Chen. (2005). Comparison of seven models for estimation of evapotranspiration and groundwater recharge using lysimeter measurement data in Germany. Hydrological Processes.19(18):3717-3734. DOI: 10.1111/gcb.12324.
[56] D. B. Anderson. (1936). Relative humidity or vapor pressure deficit. Ecology.17(2):277-282. DOI: 10.1111/gcb.12324.
[57] H. Alemu, G. B. Senay, A. T. Kaptue, V. Kovalskyy. et al.(2014). Evapotranspiration variability and its association with vegetation dynamics in the Nile Basin, 2002-2011. Remote Sensing.6(7):5885-5908. DOI: 10.1111/gcb.12324.
[58] J. Liu, Q. Zhang, X. U. Chong-Yu, J. Q. Zhai. et al.(2010). Change of actual evapotranspiration of poyang lake watershed and associated influencing factors in the past 50 years. Resources Environment in the Yangtze Basin.3:197-203. DOI: 10.1111/gcb.12324.
[59] L. Song, Q. Zhuang, Y. Yin, X. Zhu. et al.(2017). Spatio-temporal dynamics of evapotranspiration on the Tibetan Plateau from 2000 to 2010. Environmental Research Letters.12(1):014011. DOI: 10.1111/gcb.12324.
[60] Z. Du, T. D. Yao. (2006). Uplifting of Tibetan Plateau with Its Environmental Effects. Advances in Earth Science.5:451-458. DOI: 10.1111/gcb.12324.
[61] H. U. Haoran, L. Liang. (2013). Temporal and spatial variations of rainfall at the east of qinghai- tibet plateau in last 50 years. Plateau & Mountain Meteorology Research. DOI: 10.1111/gcb.12324.
[62] Y. Shen, C. Liu, M. Liu, Y. Zeng. et al.(2010). Change in pan evaporation over the past 50 years in the arid region of China. Hydrological Processes.24(2):225-231. DOI: 10.1111/gcb.12324.
[63] Y. Yin, S. Wu, D. Zhao, D. Zheng. et al.(2012). Impact of climate change on actual evapotranspiration on the Tibetan Plateau during 1981-2010. Dili Xuebao/Acta Geographica Sinica.67(11):1471-1481. DOI: 10.1111/gcb.12324.
[64] H. lin, X. Dong, X. Min, G. Rui. et al.(2010). Spatio-temporal variation of photosynthetically active radiation in China in recent 50 years. Journal of Geographical Sciences.6:803-817. DOI: 10.1111/gcb.12324.
[65] P. Cui, R. Chen, L. Xiang, F. Su. et al.(2014). Risk analysis of mountain hazards in Tibetan plateau under global warming. Progressus Inquisitiones De Mutatione Climatis.2:103-109. DOI: 10.1111/gcb.12324.
[66] Y. H. Yin, S. H. Wu, E. F. Dai. (2010). Determining factors in potential evapotranspiration changes over China in the period 1971—2008. Chinese Science Bulletin.55(29):3329-3337. DOI: 10.1111/gcb.12324.
[67] K. Tong, F. Su, D. Yang, L. Zhang. et al.(2014). Tibetan Plateau precipitation as depicted by gauge observations, reanalyses and satellite retrievals. International Journal of Climatology.34(2):265-285. DOI: 10.1111/gcb.12324.
[68] X. Li, M. Gemmer, J. Zhai, X. Liu. et al.(2013). Spatio-temporal variation of actual evapotranspiration in the Haihe River Basin of the past 50 years. Quaternary International.304:133-141. DOI: 10.1111/gcb.12324.
[69] X. C. Zhang, S. Gu, X. Q. Zhao. (2010). Radiation partitioning and its relation to environmental factors above a meadow ecosystem on the Qinghai-Tibetan Plateau. Journal of Geophysical Research: Atmospheres.115(10). DOI: 10.1111/gcb.12324.
[70] Q. Zhang, C. Y. Xu, X. Chen. (2011). Reference evapotranspiration changes in China: natural processes or human influences?. Theoretical Applied Climatology.3:479-488. DOI: 10.1111/gcb.12324.
[71] E.-M. Giannakopoulou, R. Toumi. (2012). Impacts of the Nile Delta land-use on the local climate. Atmospheric Science Letters.13(3):208-215. DOI: 10.1111/gcb.12324.
[72] Q. Z. Gao, Y. F. Wan, Y. Li, X. B. Qin. et al.(2010). Spatial and temporal pattern of alpine grassland condition and its response to human activities in Northern Tibet, China. Rangeland Journal.32(2):165-173. DOI: 10.1111/gcb.12324.
[73] Y. H. Yang, J. Y. Fang, P. A. Fay, J. E. Bell. et al.(2010). Rain use efficiency across a precipitation gradient on the Tibetan Plateau. Geophysical Research Letters.37(15). DOI: 10.1111/gcb.12324.
[74] L. Zhang, W. R. Dawes, G. R. Walker. (2001). Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research.37(3):701-708. DOI: 10.1111/gcb.12324.
[75] B. Temesgen, S. Eching, B. Davidoff, K. Frame. et al.(2005). Comparison of some reference evapotranspiration equations for California. Journal of Irrigation and Drainage Engineering.131(1):73-84. DOI: 10.1111/gcb.12324.
[76] N. Chattopadhyay, M. Hulme. (1997). Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology.87(1):55-73. DOI: 10.1111/gcb.12324.
[77] R. G. Allen, L. S. Pereira, D. Raes, M. Smith. et al.(1998). Crop evapotranspiration. Guidelines for computing crop water requirements. Fao Irrigation & Drainage Paper. DOI: 10.1111/gcb.12324.
[78] J. L. Monteith. (1972). Solar radiation and productivity in tropical ecosystems. The Journal of Applied Ecology.9(3):747-766. DOI: 10.1111/gcb.12324.
文献评价指标
浏览 215次
下载全文 17次
评分次数 0次
用户评分 0.0分
分享 18次