首页 » 文章 » 文章详细信息
PPAR Research Volume 2017 ,2017-07-27
Mediating Roles of PPARs in the Effects of Environmental Chemicals on Sex Steroids
Review Article
Qiansheng Huang 1 , 2 Qionghua Chen 3
Show affiliations
Received 2017-03-31, accepted for publication 2017-06-21, Published 2017-06-21

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that are widely involved in various physiological functions. They are widely expressed through the reproductive system. Their roles in the metabolism and function of sex steroids and thus the etiology of reproductive disorders receive great concern. Various kinds of exogenous chemicals, especially environmental pollutants, exert their adverse impact on the reproductive system through disturbing the PPAR signaling pathway. Chemicals could bind to PPARs and modulate the transcription of downstream genes containing PPRE (peroxisome proliferator response element). This will lead to altered expression of genes related to metabolism of sex steroids and thus the abnormal physiological function of sex steroids. In this review, various kinds of environmental ligands are summarized and discussed. Their interactions with three types of PPARs are classified by various data from transcript profiles, PPRE reporter in cell line, in silico docking, and gene silencing. The review will contribute to the understanding of the roles of PPARs in the reproductive toxicology of environmental chemicals.


Copyright © 2017 Qiansheng Huang and Qionghua Chen. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Qiansheng Huang.Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China, cas.cn;Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China, cas.cn.qshuang@iue.ac.cn


Qiansheng Huang,Qionghua Chen. Mediating Roles of PPARs in the Effects of Environmental Chemicals on Sex Steroids. PPAR Research ,Vol.2017(2017)



[1] T. Nakanishi, J.-I. Nishikawa, Y. Hiromori, H. Yokoyama. et al.(2005). Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Molecular Endocrinology.19(10):2502-2516. DOI: 10.1038/nrendo.2016.135.
[2] L. A. Darrow, C. R. Stein, K. Steenland. (2013). Serum perfluorooctanoic acid and perfluorooctane sulfonate concentrations in relation to birth outcomes in the Mid-Ohio Valley, 2005-2010. Environmental Health Perspectives.121(10):1207-1213. DOI: 10.1038/nrendo.2016.135.
[3] S. Takeuchi, T. Matsuda, S. Kobayashi, T. Takahashi. et al.(2006). In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR) and PPAR and quantitative analysis of in vivo induction pathway. Toxicology and Applied Pharmacology.217(3):235-244. DOI: 10.1038/nrendo.2016.135.
[4] C. H. Hurst, D. J. Waxman. (2003). Activation of PPAR and PPAR by environmental phthalate monoesters. Toxicological Sciences.74(2):297-308. DOI: 10.1038/nrendo.2016.135.
[5] L.-Q. Fan, R. C. Cattley, J. C. Corton. (1998). Tissue-specific induction of 17-hydroxysteroid dehydrogenase type IV by peroxisome proliferator chemicals is dependent on the peroxisome proliferator-activated receptor. Journal of Endocrinology.158(2):237-246. DOI: 10.1038/nrendo.2016.135.
[6] S. De Coster, N. van Larebeke. (2012). Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of Environmental and Public Health.2012-52. DOI: 10.1038/nrendo.2016.135.
[7] L.-Q. Fan, L. You, H. Brown-Borg, S. Brown. et al.(2004). Regulation of phase I and phase II steroid metabolism enzymes by PPAR activators. Toxicology.204(2-3):109-121. DOI: 10.1038/nrendo.2016.135.
[8] E. Campioli, A. Batarseh, J. Li, V. Papadopoulos. et al.(2011). The endocrine disruptor mono-(2-ethylhexyl) phthalate affects the differentiation of human liposarcoma cells (SW 872). PLoS ONE.6(12). DOI: 10.1038/nrendo.2016.135.
[9] S. L. Meng, L. P. Qiu, G. D. Hu, L. M. Fan. et al.(2016). Responses and recovery pattern of sex steroid hormones in testis of Nile tilapia exposed to sublethal concentration of methomyl. Ecotoxicology.25(10):1805-1811. DOI: 10.1038/nrendo.2016.135.
[10] D. A. Savitz, C. R. Stein, B. Elston, G. A. Wellenius. et al.(2012). Relationship of perfluorooctanoic acid exposure to pregnancy outcome based on birth records in the mid-Ohio valley. Environmental Health Perspectives.120(8):1201-1207. DOI: 10.1038/nrendo.2016.135.
[11] J. N. Feige, L. Gelman, D. Rossi, V. Zoete. et al.(2007). The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor modulator that promotes adipogenesis. Journal of Biological Chemistry.282(26):19152-19166. DOI: 10.1038/nrendo.2016.135.
[12] E. Grasselli, K. Cortese, A. Voci, L. Vergani. et al.(2013). Direct effects of Bisphenol A on lipid homeostasis in rat hepatoma cells. Chemosphere.91(8):1123-1129. DOI: 10.1038/nrendo.2016.135.
[13] I. A. Sheikh, A. A. Khweek, M. A. Beg. (2016). Peroxisome proliferator-activated receptors as potential targets for carcinogenic activity of polychlorinated biphenyls: A computational perspective. Anticancer Research.36(11):6117-6124. DOI: 10.1038/nrendo.2016.135.
[14] Y. Zhao, Y. S. Tan, S. Z. Haslam, C. Yang. et al.(2010). Perfluorooctanoic acid effects on steroid hormone and growth factor levels mediate stimulation of peripubertal mammary gland development in C57Bl/6 mice. Toxicological Sciences.115(1):214-224. DOI: 10.1038/nrendo.2016.135.
[15] D. A. Savitz, C. R. Stein, S. M. Bartell, B. Elston. et al.(2012). Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community. Epidemiology.23(3):386-392. DOI: 10.1038/nrendo.2016.135.
[16] M. A. Babich. (2010). Review of Exposure And Toxicity Data for Phthalate Substitutes. . DOI: 10.1038/nrendo.2016.135.
[17] Y. Lin, L. Min, Q. Huang, Y. Chen. et al.(2015). The combined effects of DEHP and PCBs on phospholipase in the livers of mice. Environmental Toxicology.30(2):197-204. DOI: 10.1038/nrendo.2016.135.
[18] T. Lovekamp-Swan, B. J. Davis. (2003). Mechanisms of phthalate ester toxicity in the female reproductive system. Environmental Health Perspectives.111(2):139-145. DOI: 10.1038/nrendo.2016.135.
[19] J. L. Lyche, R. Nourizadeh-Lillabadi, C. Almaas, B. Stavik. et al.(2010). Natural mixtures of persistent organic pollutants (POP) increase weight gain, advance puberty, and induce changes in gene expression associated with steroid hormones and obesity in female zebrafish. Journal of Toxicology and Environmental Health, Part A: Current Issues.73(15):1032-1057. DOI: 10.1038/nrendo.2016.135.
[20] A. Mattsson, A. Kärrman, R. Pinto, B. Brunström. et al.(2015). Metabolic profiling of chicken embryos exposed to perfluorooctanoic acid (PFOA) and agonists to peroxisome proliferator-activated receptors. PLoS ONE.10(12). DOI: 10.1038/nrendo.2016.135.
[21] J. L. Lyche, R. Nourizadeh-Lillabadi, C. Karlsson, B. Stavik. et al.(2011). Natural mixtures of POPs affected body weight gain and induced transcription of genes involved in weight regulation and insulin signaling. Aquatic Toxicology.102(3-4):197-204. DOI: 10.1038/nrendo.2016.135.
[22] G. S. Gadupudi, W. D. Klaren, A. K. Olivier, A. J. Klingelhutz. et al.(2016). PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicological Sciences.149(1):98-110. DOI: 10.1038/nrendo.2016.135.
[23] N. Horii, K. Sato, N. Mesaki, M. Iemitsu. et al.(2016). DHEA Administration Activates Transcription of Muscular Lipid Metabolic Enzymes via PPAR and PPAR in Obese Rats. Hormone and Metabolic Research.48(3):207-212. DOI: 10.1038/nrendo.2016.135.
[24] M. Yilmaz. (2006). Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-gamma gene in women with polycystic ovary syndrome. Gynecological Endocrinology.22(6):336-342. DOI: 10.1038/nrendo.2016.135.
[25] S. Ueki, M. Oguma, A. Usami, Y. Kamada. et al.(2009). Regulation of peroxisome proliferator-activated receptor- expression in human eosinophils by estradiol. International Archives of Allergy and Immunology.149:51-56. DOI: 10.1038/nrendo.2016.135.
[26] C. Lopes, T. V. Madureira, N. Ferreira, I. Pinheiro. et al.(2016). Peroxisome proliferator-activated receptor gamma (PPAR) in brown trout: Interference of estrogenic and androgenic inputs in primary hepatocytes. Environmental Toxicology and Pharmacology.46:328-336. DOI: 10.1038/nrendo.2016.135.
[27] N. Pavlikova, T. M. Kortner, A. Arukwe. (2010). Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin. Chemico-Biological Interactions.185(2):119-127. DOI: 10.1038/nrendo.2016.135.
[28] C. Xu, J.-A. Chen, Z. Qiu, Q. Zhao. et al.(2010). Ovotoxicity and PPAR-mediated aromatase downregulation in female Sprague-Dawley rats following combined oral exposure to benzo[a]pyrene and di-(2-ethylhexyl) phthalate. Toxicology Letters.199(3):323-332. DOI: 10.1038/nrendo.2016.135.
[29] A. J. Filgo, E. M. Quist, M. J. Hoenerhoff, A. E. Brix. et al.(2015). Perfluorooctanoic acid (PFOA)–induced liver lesions in two strains of mice following developmental exposures: PPAR is not required. Toxicologic Pathology.43(4):558-568. DOI: 10.1038/nrendo.2016.135.
[30] J. Ernst, J.-C. Jann, R. Biemann, H. M. Koch. et al.(2014). Effects of the environmental contaminants DEHP and TCDD on estradiol synthesis and aryl hydrocarbon receptor and peroxisome proliferator-activated receptor signalling in the human granulosa cell line KGN. Molecular Human Reproduction.20(9):919-928. DOI: 10.1038/nrendo.2016.135.
[31] A. L. Strong, Z. Shi, M. J. Strong, D. F. B. Miller. et al.(2015). Effects of the endocrine-disrupting chemical DDT on self-renewal and differentiation of human Mesenchymal stem cells. Environmental Health Perspectives.123(1):42-48. DOI: 10.1038/nrendo.2016.135.
[32] J. C. DeWitt, A. Shnyra, M. Z. Badr, S. E. Loveless. et al.(2009). Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha. Critical Reviews in Toxicology.39(1):76-94. DOI: 10.1038/nrendo.2016.135.
[33] T. Lovekamp-Swan, A. M. Jetten, B. J. Davis. (2003). Dual activation of PPAR and PPAR by mono-(2-ethylhexyl) phthalate in rat ovarian granulosa cells. Molecular and Cellular Endocrinology.201(1-2):133-141. DOI: 10.1038/nrendo.2016.135.
[34] E. Sérée, P.-H. Villard, J.-M. Pascussi, T. Pineau. et al.(2004). Evidence for a new human CYP1A1 regulation pathway involving PPAR- and 2 PPRE sites. Gastroenterology.127(5):1436-1445. DOI: 10.1038/nrendo.2016.135.
[35] Z. Wang, I. T. Cousins, M. Scheringer, K. Hungerbuehler. et al.(2015). Hazard assessment of fluorinated alternatives to long-chain perfluoroalkyl acids (PFAAs) and their precursors: Status quo, ongoing challenges and possible solutions. Environment International.75:172-179. DOI: 10.1038/nrendo.2016.135.
[36] A. Riu, A. le Maire, M. Grimaldi, M. Audebert. et al.(2011). Characterization of Novel Ligands of ER, Er, and PPAR: The Case of Halogenated Bisphenol A and Their Conjugated Metabolites. Toxicological Sciences.122(2):372-382. DOI: 10.1038/nrendo.2016.135.
[37] E. Honkisz, A. K. Wójtowicz. (2015). Modulation of estradiol synthesis and aromatase activity in human choriocarcinoma JEG-3 cells exposed to tetrabromobisphenol A. Toxicology in Vitro.29(1):44-50. DOI: 10.1038/nrendo.2016.135.
[38] E. Honkisz, A. K. Wójtowicz. (2015). The role of PPAR in TBBPA-mediated endocrine disrupting effects in human choriocarcinoma JEG-3 cells. Molecular and Cellular Biochemistry.409(1-2):81-91. DOI: 10.1038/nrendo.2016.135.
[39] T. Ye, M. Kang, Q. Huang, C. Fang. et al.(2016). Accumulation of Di(2-ethylhexyl) Phthalate Causes Endocrine-Disruptive Effects in Marine Medaka (Oryzias melastigma) Embryos. Environmental Toxicology.31(1):116-127. DOI: 10.1038/nrendo.2016.135.
[40] S. Lee, D. B. Martinez-Arguelles, E. Campioli, V. Papadopoulos. et al.(2017). Fetal exposure to low levels of the plasticizer DEHP predisposes the adult male adrenal gland to endocrine disruption. Endocrinology.158(2):304-318. DOI: 10.1038/nrendo.2016.135.
[41] G. Guerriero. (2009). Vertebrate sex steroid receptors: Evolution, ligands, and neurodistribution. Annals of the New York Academy of Sciences.1163:154-168. DOI: 10.1038/nrendo.2016.135.
[42] W. V. Welshons, K. A. Thayer, B. M. Judy, J. A. Taylor. et al.(2003). Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives.111(8):994-1006. DOI: 10.1038/nrendo.2016.135.
[43] Q. S. Huang. (2016). The inflammation response to DEHP through PPAR gamma in endometrial cells. International Journal of Environmental Research and Public Health.13(3):13. DOI: 10.1038/nrendo.2016.135.
[44] Y. Harada, N. Tanaka, M. Ichikawa, Y. Kamijo. et al.(2016). PPAR-dependent cholesterol/testosterone disruption in Leydig cells mediates 2,4-dichlorophenoxyacetic acid-induced testicular toxicity in mice. Archives of Toxicology.90(12):3061-3071. DOI: 10.1038/nrendo.2016.135.
[45] W. Xia, Y.-J. Wan, X. Wang, Y.-Y. Li. et al.(2011). Sensitive bioassay for detection of PPAR potentially hazardous ligands with gold nanoparticle probe. Journal of Hazardous Materials.192(3):1148-1154. DOI: 10.1038/nrendo.2016.135.
[46] M. Yoon. (2010). PPAR in obesity: sex difference and estrogen involvement. PPAR Research.2010-16. DOI: 10.1038/nrendo.2016.135.
[47] F. Acconcia, V. Pallottini, M. Marino. (2015). Molecular mechanisms of action of BPA. Dose-Response.13(4). DOI: 10.1038/nrendo.2016.135.
[48] Q. Huang, Y. Chen, Q. Chen, H. Zhang. et al.(2017). Dioxin-like rather than non-dioxin-like PCBs promote the development of endometriosis through stimulation of endocrine-inflammation interactions. Archives of Toxicology.91(4):1915-1924. DOI: 10.1038/nrendo.2016.135.
[49] C. Fang, X. Wu, Q. Huang, Y. Liao. et al.(2012). PFOS elicits transcriptional responses of the ER, AHR and PPAR pathways in Oryzias melastigma in a stage-specific manner. Aquatic Toxicology.106-107:9-19. DOI: 10.1038/nrendo.2016.135.
[50] A. Riu, M. Grimaldi, A. le Maire, G. Bey. et al.(2011). Peroxisome proliferator-activated receptor is a target for halogenated analogs of bisphenol A. Environmental Health Perspectives.119(9):1227-1232. DOI: 10.1038/nrendo.2016.135.
[51] M. K. Sarath Josh, S. Pradeep, K. S. Vijayalekshmi Amma, S. Balachandran. et al.(2014). Phthalates efficiently bind to human peroxisome proliferator activated receptor and retinoid X receptor , , subtypes: an in silico approach. Journal of Applied Toxicology.34(7):754-765. DOI: 10.1038/nrendo.2016.135.
[52] M. L. Takacs, B. D. Abbott. (2007). Activation of mouse and human peroxisome proliferator-activated receptors (, /, ) by perfluorooctanoic acid and perfluorooctane sulfonate. Toxicological Sciences.95(1):108-117. DOI: 10.1038/nrendo.2016.135.
[53] T. Kaya, S. C. Mohr, D. J. Waxman, S. Vajda. et al.(2006). Computational screening of phthalate monoesters for binding to PPAR. Chemical Research in Toxicology.19(8):999-1009. DOI: 10.1038/nrendo.2016.135.
[54] J. P. Vanden Heuvel, J. T. Thompson, S. R. Frame, P. J. Gillies. et al.(2006). Differential activation of nuclear receptors by perfluorinated fatty acid analogs and natural fatty acids: A comparison of human, mouse, and rat peroxisome proliferator-activated receptor-, -, and -, liver X receptor-, and retinoid X receptor-. Toxicological Sciences.92(2):476-489. DOI: 10.1038/nrendo.2016.135.
[55] J. M. Shipley, C. H. Hurst, S. S. Tanaka, F. L. DeRoos. et al.(2004). -activation of PPAR and induction of PPAR target genes by perfluorooctane-based chemicals. Toxicological Sciences.80(1):151-160. DOI: 10.1038/nrendo.2016.135.
[56] L. Aghajanova, L. C. Giudice. (2011). Effect of bisphenol A on human endometrial stromal fibroblasts in vitro. Reproductive BioMedicine Online.22(3):249-256. DOI: 10.1038/nrendo.2016.135.
[57] M. Hoffmann, E. Fiedor, A. Ptak. (2017). Bisphenol A and its derivatives tetrabromobisphenol A and tetrachlorobisphenol A induce apelin expression and secretion in ovarian cancer cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Toxicology Letters.269:15-22. DOI: 10.1038/nrendo.2016.135.
[58] J. Mathieu-Denoncourt, S. J. Wallace, S. R. de Solla, V. S. Langlois. et al.(2015). Plasticizer endocrine disruption: Highlighting developmental and reproductive effects in mammals and non-mammalian aquatic species. General and Comparative Endocrinology.216:74-88. DOI: 10.1038/nrendo.2016.135.
[59] N. Kambia, A. Farce, K. Belarbi, B. Gressier. et al.(2016). Docking study: PPARs interaction with the selected alternative plasticizers to di(2-ethylhexyl) phthalate. Journal of Enzyme Inhibition and Medicinal Chemistry.31(3):448-455. DOI: 10.1038/nrendo.2016.135.
[60] F. Fallone, P.-H. Villard, L. Decome, E. Sérée. et al.(2005). PPAR activation potentiates AhR-induced CYP1A1 expression. Toxicology.216(2-3):122-128. DOI: 10.1038/nrendo.2016.135.
[61] Z. R. Craig, W. Wang, J. A. Flaws. (2011). Endocrine-disrupting chemicals in ovarian function: Effects on steroidogenesis, metabolism and nuclear receptor signaling. Reproduction.142(5):633-646. DOI: 10.1038/nrendo.2016.135.
[62] H. Ding, W. Zheng, H. Han, X. Hu. et al.(2017). Reproductive toxicity of linuron following gestational exposure in rats and underlying mechanisms. Toxicology Letters.266:49-55. DOI: 10.1038/nrendo.2016.135.
[63] A. Ben Slima, Y. Chtourou, M. Barkallah, H. Fetoui. et al.(2017). Endocrine disrupting potential and reproductive dysfunction in male mice exposed to deltamethrin. Human & Experimental Toxicology.36(3):218-226. DOI: 10.1038/nrendo.2016.135.
[64] F. Echeverría, M. Ortiz, R. Valenzuela, L. A. Videla. et al.(2016). Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukotrienes and Essential Fatty Acids.114:28-34. DOI: 10.1038/nrendo.2016.135.
[65] H. Ishibashi, H. Iwata, E.-Y. Kim, L. Tao. et al.(2008). Contamination and effects of perfluorochemicals in baikal seal (Pusa sibirica). 2. Molecular characterization, expression level, and transcriptional activation of peroxisome proliferator-activated receptor. Environmental Science and Technology.42(7):2302-2308. DOI: 10.1038/nrendo.2016.135.
[66] X. Wang, M. W. Kilgore. (2002). Signal cross-talk between estrogen receptor alpha and beta and the peroxisome proliferator-activated receptor gamma1 in MDA-MB-231 and MCF-7 breast cancer cells. Molecular and Cellular Endocrinology.194(1-2):123-133. DOI: 10.1038/nrendo.2016.135.
[67] L. Li, Q. Wang, Y. Zhang, Y. Niu. et al.(2015). The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: Insights from molecular dynamics (MD) simulations. PLoS ONE.10(3). DOI: 10.1038/nrendo.2016.135.
[68] J. A. Bjork, K. B. Wallace. (2009). Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicological Sciences.111(1):89-99. DOI: 10.1038/nrendo.2016.135.
[69] D. Bonofiglio, S. Gabriele, S. Aquila, S. Catalano. et al.(2005). Estrogen receptor binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor signaling in breast cancer cells. Clinical Cancer Research.11(17):6139-6147. DOI: 10.1038/nrendo.2016.135.
[70] Z. Shi, H. Zhang, L. Ding, Y. Feng. et al.(2009). The effect of perfluorododecanonic acid on endocrine status, sex hormones and expression of steroidogenic genes in pubertal female rats. Reproductive Toxicology.27(3-4):352-359. DOI: 10.1038/nrendo.2016.135.
[71] M. Vitti, G. Di Emidio, M. Di Carlo, G. Carta. et al.(2016). Peroxisome proliferator-activated receptors in female reproduction and fertility. PPAR Research.2016-12. DOI: 10.1038/nrendo.2016.135.
[72] T. Buhrke, A. Kibellus, A. Lampen. (2013). In vitro toxicological characterization of perfluorinated carboxylic acids with different carbon chain lengths. Toxicology Letters.218(2):97-104. DOI: 10.1038/nrendo.2016.135.
[73] B. Gross, M. Pawlak, P. Lefebvre, B. Staels. et al.(2017). PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nature Reviews Endocrinology.13(1):36-49. DOI: 10.1038/nrendo.2016.135.
[74] M. Grimaldi, A. Boulahtouf, V. Delfosse, E. Thouennon. et al.(2015). Reporter Cell Lines to Evaluate The Selectivity of Chemicals for Human and Zebrafish Estrogen and Peroxysome Proliferator Activated Receptors. Frontiers in Neuroscience.9-212. DOI: 10.1038/nrendo.2016.135.
[75] A. le Maire, M. Grimaldi, D. Roecklin, S. Dagnino. et al.(2009). Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Reports.10(4):367-373. DOI: 10.1038/nrendo.2016.135.
[76] J. Yang, L. Chen, X. Zhang, Y. Zhou. et al.(2008). PPARs and female reproduction: evidence from genetically manipulated mice. PPAR Research.2008-8. DOI: 10.1038/nrendo.2016.135.
[77] J. Kwintkiewicz, Y. Nishi, T. Yanase, L. C. Giudice. et al.(2010). Peroxisome proliferator-activated receptor- mediates bisphenol A inhibition of FSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. Environmental Health Perspectives.118(3):400-406. DOI: 10.1038/nrendo.2016.135.
[78] B. D. Abbott, C. R. Wood, A. M. Watkins, K. Tatum-Gibbs. et al.(2012). Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal CD-1 mouse tissues. Reproductive Toxicology.33(4):491-505. DOI: 10.1038/nrendo.2016.135.
[79] H. Ishibashi, E.-Y. Kim, H. Iwata. (2011). Transactivation potencies of the Baikal seal (Pusa sibirica) peroxisome proliferator-activated receptor by perfluoroalkyl carboxylates and sulfonates: Estimation of PFOA induction equivalency factors. Environmental Science and Technology.45(7):3123-3130. DOI: 10.1038/nrendo.2016.135.
[80] D. Montes-Grajales, J. Olivero-Verbel. (2013). Computer-aided identification of novel protein targets of bisphenol A. Toxicology Letters.222(3):312-320. DOI: 10.1038/nrendo.2016.135.
[81] CDC. Fourth national report on human exposure to environmental chemicals. . DOI: 10.1038/nrendo.2016.135.
[82] G. Biasiotto, I. Zanella, A. Masserdotti, R. Pedrazzani. et al.(2016). Municipal wastewater affects adipose deposition in male mice and increases 3T3-L1 cell differentiation. Toxicology and Applied Pharmacology.297:32-40. DOI: 10.1038/nrendo.2016.135.
[83] P. Froment, F. Gizard, D. Defever, B. Staels. et al.(2006). Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. Journal of Endocrinology.189(2):199-209. DOI: 10.1038/nrendo.2016.135.
[84] W. Zhang, Y. Zhang, H. Zhang, J. Wang. et al.(2012). Sex differences in transcriptional expression of FABPs in zebrafish liver after chronic perfluorononanoic acid exposure. Environmental Science and Technology.46(9):5175-5182. DOI: 10.1038/nrendo.2016.135.
浏览 275次
下载全文 34次
评分次数 0次
用户评分 0.0分
分享 14次