首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2017 ,2017-07-24
Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China
Research Article
Wenhao Zhang 1 Hui Xu 1 Fengjie Zheng 1
Show affiliations
DOI:10.1155/2017/4197652
Received 2017-03-14, accepted for publication 2017-06-04, Published 2017-06-04
PDF
摘要

Classification of Beijing aerosol is carried out based on clustering optical properties obtained from three Aerosol Robotic Network (AERONET) sites. The fuzzy c-mean (FCM) clustering algorithm is used to classify fourteen-year (2001–2014) observations, totally of 6,732 records, into six aerosol types. They are identified as fine particle nonabsorbing, two kinds of fine particle moderately absorbing (fine-MA1 and fine-MA2), fine particle highly absorbing, polluted dust, and desert dust aerosol. These aerosol types exhibit obvious optical characteristics difference. While five of them show similarities with aerosol types identified elsewhere, the polluted dust aerosol has no comparable prototype. Then the membership degree, a significant parameter provided by fuzzy clustering, is used to analyze internal variation of optical properties of each aerosol type. Finally, temporal variations of aerosol types are investigated. The dominant aerosol types are polluted dust and desert dust in spring, fine particle nonabsorbing aerosol in summer, and fine particle highly absorbing aerosol in winter. The fine particle moderately absorbing aerosol occurs during the whole year. Optical properties of the six types can also be used for radiative forcing estimation and satellite aerosol retrieval. Additionally, methodology of this study can be applied to identify aerosol types on a global scale.

授权许可

Copyright © 2017 Wenhao Zhang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Hui Xu.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China, cas.cn.xhradi@163.com

推荐引用方式

Wenhao Zhang,Hui Xu,Fengjie Zheng. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China. Advances in Meteorology ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
14

是否收藏?

参考文献
[1] K. H. Lee, Y. J. Kim. (2010). Satellite remote sensing of Asian aerosols: a case study of clean, polluted, and Asian dust storm days. Atmospheric Measurement Techniques.3(6):1771-1784. DOI: 10.1038/nature01091.
[2] Y. Qin, R. M. Mitchell. (2009). Characterisation of episodic aerosol types over the Australian continent. Atmospheric Chemistry and Physics.9(6):1943-1956. DOI: 10.1038/nature01091.
[3] X. He, C. C. Li, A. K. Lau, Z. Z. Deng. et al.(2009). An intensive study of aerosol optical properties in Beijing urban area. Atmospheric Chemistry and Physics.9(22):8903-8915. DOI: 10.1038/nature01091.
[4] P. J. Sheridan, D. J. Delene, J. A. Ogren. (2001). Four years of continuous surface aerosol measurements from the Department of Energy’s Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. Journal of Geophysical Research Atmospheres.106(18):20735-20747. DOI: 10.1038/nature01091.
[5] B. Guinot, H. Cachier, J. Sciare, Y. Tong. et al.(2007). Beijing aerosol: atmospheric interactions and new trends. Journal of Geophysical Research: Atmospheres.112(14). DOI: 10.1038/nature01091.
[6] X. Zheng, X. Liu, F. Zhao, F. Duan. et al.(2005). Seasonal characteristics of biomass burning contribution to Beijing aerosol. Science in China, Series B: Chemistry.48(5):481-488. DOI: 10.1038/nature01091.
[7] O. Dubovik, B. Holben, T. F. Eck, A. Smirnov. et al.(2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the Atmospheric Sciences.59(3):590-608. DOI: 10.1038/nature01091.
[8] H. Che, X. Xia, J. Zhu, H. Wang. et al.(2015). Aerosol optical properties under the condition of heavy haze over an urban site of Beijing, China. Environmental science and pollution research international.22(2):1043-1053. DOI: 10.1038/nature01091.
[9] M. O. Andreae, C. D. Jones, P. M. Cox. (2005). Strong present-day aerosol cooling implies a hot future. Nature.435(7046):1187-1190. DOI: 10.1038/nature01091.
[10] M. Balarabe, K. Abdullah, M. Nawawi. (2016). Seasonal Variations of Aerosol Optical Properties and Identification of Different Aerosol Types Based on AERONET Data over Sub-Sahara West-Africa. Atmospheric and Climate Sciences.06(01):13-28. DOI: 10.1038/nature01091.
[11] T. F. Eck, B. N. Holben, J. S. Reid, O. Dubovik. et al.(1999). Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. Journal of Geophysical Research.104(24):31333-31349. DOI: 10.1038/nature01091.
[12] H. Yu, Y. J. Kaufman, M. Chin, G. Feingold. et al.(2006). A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics.6(3):613-666. DOI: 10.1038/nature01091.
[13] J. C. Bezdek. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms. DOI: 10.1038/nature01091.
[14] B. N. Holben, T. F. Eck, I. Slutsker, D. Tanré. et al.(1998). AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sensing of Environment.66(1):1-16. DOI: 10.1038/nature01091.
[15] O. Torres, P. K. Bhartia, J. R. Herman, Z. Ahmad. et al.(1998). Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: theoretical basis. Journal of Geophysical Research D.103(14):17099-17110. DOI: 10.1038/nature01091.
[16] O. Dubovik, A. Smirnov, B. N. Holben, M. D. King. et al.(2000). Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements. Journal of Geophysical Research D: Atmospheres.105(8):9791-9806. DOI: 10.1038/nature01091.
[17] S. D. Xie, Z. Liu, T. Chen, L. Hua. et al.(2008). Spatiotemporal variations of ambient PM10 source contributions in Beijing in 2004 using positive matrix factorization. Atmospheric Chemistry and Physics.8(10):2701-2716. DOI: 10.1038/nature01091.
[18] J. Lee, J. Kim, C. H. Song, S. B. Kim. et al.(2010). Characteristics of aerosol types from AERONET sunphotometer measurements. Atmospheric Environment.44(26):3110-3117. DOI: 10.1038/nature01091.
[19] X. Zhao, X. Zhang, W. Pu, W. Meng. et al.(2011). Scattering properties of the atmospheric aerosol in Beijing, China. Atmospheric Research.101(3):799-808. DOI: 10.1038/nature01091.
[20] A. H. Omar, J. Won, D. M. Winker, S. Yoon. et al.(2005). Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. Journal of Geophysical Research.110(10):1-14. DOI: 10.1038/nature01091.
[21] L. Wu, Q.-C. Zeng. (2014). Classifying Asian dust aerosols and their columnar optical properties using fuzzy clustering. Journal of Geophysical Research Atmospheres.119(5):2529-2542. DOI: 10.1038/nature01091.
[22] A. Pozzer, A. De Meij, J. Yoon, H. Tost. et al.(2015). AOD trends during 2001-2010 from observations and model simulations. Atmospheric Chemistry and Physics.15(10):5521-5535. DOI: 10.1038/nature01091.
[23] W. Zhang, X. Gu, H. Xu, T. Yu. et al.(2016). Assessment of OMI near-UV aerosol optical depth over Central and East Asia. Journal of Geophysical Research: Atmospheres.121(1):382-398. DOI: 10.1038/nature01091.
[24] C. F. Bohren, D. R. Huffman. (1998). Absorption and Scattering of Light by Small Particles. DOI: 10.1038/nature01091.
[25] M.-K. Kim, W. K. M. Lau, K.-M. Kim, W.-S. Lee. et al.(2007). A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring. Geophysical Research Letters.34(24). DOI: 10.1038/nature01091.
[26] G. S. Brown. (1984). The validity of shadowing corrections in rough surface scattering. Radio Science.19(6):1461-1468. DOI: 10.1038/nature01091.
[27] Y. J. Kaufman, D. Tanré, O. Dubovik, A. Karnieli. et al.(2001). Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophysical Research Letters.28(8):1479-1482. DOI: 10.1038/nature01091.
[28] Y. J. Kaufman, D. Tanré, O. Boucher. (2002). A satellite view of aerosols in the climate system. Nature.419(6903):215-223. DOI: 10.1038/nature01091.
[29] P. Liu, C. Zhao, Q. Zhang, Z. Deng. et al.(2009). Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B.61(5). DOI: 10.1038/nature01091.
[30] J. Hansen, M. Sato, R. Ruedy. (1997). Radiative forcing and climate response. Journal of Geophysical Research D: Atmospheres.102(6):6831-6864. DOI: 10.1038/nature01091.
[31] X. Yu, C. Shi, J. Ma, B. Zhu. et al.(2013). Aerosol optical properties during firework, biomass burning and dust episodes in Beijing. Atmospheric Environment.81:475-484. DOI: 10.1038/nature01091.
[32] C. E. Adler, G. Hirsch Hadorn. (2014). The IPCC and treatment of uncertainties: topics and sources of dissensus. Wiley Interdisciplinary Reviews: Climate Change.5(5):663-676. DOI: 10.1038/nature01091.
[33] R. C. Levy, L. A. Remer, O. Dubovik. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research Atmospheres.112(13). DOI: 10.1038/nature01091.
[34] X. Yu, B. Zhu, Y. Yin, J. Yang. et al.(2011). A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region. Atmospheric Research.99(2):241-247. DOI: 10.1038/nature01091.
[35] K. Okada, J. Heintzenberg, K. Kai, Y. Qin. et al.(2001). Shape of atmospheric mineral particles collected in three Chinese arid-regions. Geophysical Research Letters.28(16):3123-3126. DOI: 10.1038/nature01091.
文献评价指标
浏览 77次
下载全文 7次
评分次数 0次
用户评分 0.0分
分享 14次