首页 » 文章 » 文章详细信息
Advances in High Energy Physics Volume 2017 ,2017-07-12
Holographic van der Waals Phase Transition for a Hairy Black Hole
Research Article
Xiao-Xiong Zeng 1 , 2 Yi-Wen Han 3
Show affiliations
DOI:10.1155/2017/2356174
Received 2017-03-02, accepted for publication 2017-05-29, Published 2017-05-29
PDF
摘要

The van der Waals (VdW) phase transition in a hairy black hole is investigated by analogizing its charge, temperature, and entropy as the temperature, pressure, and volume in the fluid, respectively. The two-point correlation function (TCF), which is dual to the geodesic length, is employed to probe this phase transition. We find the phase structure in the temperature-thermal entropy plane besides the scale of the horizontal coordinate (geodesic length plane resembles that in the temperature). In addition, we find the equal area law (EAL) for the first-order phase transition and critical exponent of the heat capacity for the second-order phase transition in the temperature-thermal entropy plane (geodesic length plane is consistent with that in temperature), which implies that the TCF is a good probe to probe the phase structure of the back hole.

授权许可

Copyright © 2017 Xiao-Xiong Zeng and Yi-Wen Han. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

图表

Relations between temperature and thermal entropy for different e with q=0.05; curves from top to down correspond to cases e varying from 0.1 to 0.2 with step 0.01.

Relations between temperature and thermal entropy for different e with q=0.05; curves from top to down correspond to cases e varying from 0.1385 to 0.139 with step 0.0001.

Relations between temperature and thermal entropy for different e with q=0.05.

The F-T relation for different e with q=0.05.

Relations between geodesic length and temperature for different e with q=0.05, θ0=0.1.

Relations between geodesic length and temperature for different e with q=0.05, θ0=0.2.

Relations between log⁡T-T2 and log⁡δL-δLc for the case q=0.05,e=ec. (a) corresponds to the case θ0=0.1 while (b) corresponds to θ0=0.2.

Relations between log⁡T-T2 and log⁡δL-δLc for the case q=0.05,e=ec. (a) corresponds to the case θ0=0.1 while (b) corresponds to θ0=0.2.

通讯作者

Xiao-Xiong Zeng.School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China, cqjtu.edu.cn;State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China, cas.cn.xxzengphysics@163.com

推荐引用方式

Xiao-Xiong Zeng,Yi-Wen Han. Holographic van der Waals Phase Transition for a Hairy Black Hole. Advances in High Energy Physics ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
15

是否收藏?

参考文献
[1] R. Cai, L. Li, L. Li, R. Yang. et al.(2015). Introduction to holographic superconductor models. Science China Physics, Mechanics & Astronomy.58(6):1-46. DOI: 10.1007/BF01208266.
[2] X. X. Zeng, M. X. Liu, W. B. Liu. (2012). Analytic treatment on stimulated holographic superconductors. Int J Mod Phys A.27. DOI: 10.1007/BF01208266.
[3] S. A. Hartnoll, C. P. Herzog, G. T. Horowitz. (2008). Building a holographic superconductor. Physical Review Letters.101(3). DOI: 10.1007/BF01208266.
[4] D. Galante, M. Schvellinger. (2012). Thermalization with a chemical potential from AdS spaces. Journal of High Energy Physics.2012(7, article no. 096). DOI: 10.1007/BF01208266.
[5] X.-X. Zeng, X.-M. Liu, W.-B. Liu. (2015). Holographic thermalization in noncommutative geometry. Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology.744:48-54. DOI: 10.1007/BF01208266.
[6] D. Kubiznak, R. B. Mann. (2012). criticality of charged AdS black holes. Journal of High Energy Physics.1207, article 33. DOI: 10.1007/BF01208266.
[7] V. Balasubramanian, A. Bernamonti, J. de Boer. (2011). Holographic thermalization. Physical Review D.84, article 026010(2). DOI: 10.1007/BF01208266.
[8] B. Craps, E. Kiritsis, C. Rosen, A. Taliotis. et al.(2014). Gravitational collapse and thermalization in the hard wall model. Journal of High Energy Physics.2014(2, article no. 120). DOI: 10.1007/BF01208266.
[9] Y. P. Hu, X. X. Zeng, H. Q. Zhang. (2017). Holographic thermalization and generalized vaidya-ads solutions in massive gravity. Physics Letters B.765:120-126. DOI: 10.1007/BF01208266.
[10] A. Chamblin, R. Emparan, C. V. Johnson, R. C. Myers. et al.(1999). Charged AdS black holes and catastrophic holography. Physical Review. D. Third Series.60(6)-064018, 17. DOI: 10.1007/BF01208266.
[11] V. Balasubramanian, A. Bernamonti, J. de Boer, B. Craps. et al.(2011). Inhomogeneous thermalization in strongly coupled field theories. Physical Review Letters.106, article 191601. DOI: 10.1007/BF01208266.
[12] X. X. Zeng, X. Y. Hu, L. F. Li. (2017). Effect of phantom dark energy on holographic thermalization. Chinese Physics Letters.34, article 010401(1). DOI: 10.1007/BF01208266.
[13] P. H. Nguyen. (2015). An equal area law for the van der Waals transition of holographic entanglement entropy. Journal of High Energy Physics.12, article 139. DOI: 10.1007/BF01208266.
[14] R. A. Hennigar, R. B. Mann. (2015). Reentrant phase transitions and van derwaals behaviour for hairy black holes. Entropy.17(12):8056-8072. DOI: 10.1007/BF01208266.
[15] X. X. Zeng, D. Y. Chen, L. F. Li. (2015). Holographic thermalization and gravitational collapse in a spacetime dominated by quintessence dark energy. Physical Review D.91(4). DOI: 10.1007/BF01208266.
[16] M. Galante, G. Giribet, A. Goya, J. Oliva. et al.(2015). Chemical potential driven phase transition of black holes in anti-de Sitter space. Physical Review D - Particles, Fields, Gravitation and Cosmology.92(10). DOI: 10.1007/BF01208266.
[17] S. W. Hawking, D. N. Page. (1982/83). Thermodynamics of black holes in anti-de Sitter space. Communications in Mathematical Physics.87(4):577-588. DOI: 10.1007/BF01208266.
[18] E. Witten. (2001). Anti-de Sitter space, thermal phase transition and confinement in gauge theories. International Journal of Modern Physics A. Particles and Fields. Gravitation. Cosmology.16(16):2747-2769. DOI: 10.1007/BF01208266.
[19] J.-X. Mo, G.-Q. Li, Z.-T. Lin, X.-X. Zeng. et al.(2017). Revisiting van der Waals like behavior of AdS black holes via the two point correlation function. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems.918:11-22. DOI: 10.1007/BF01208266.
[20] X.-X. Zeng, L.-F. Li. (2016). Holographic Phase Transition Probed by Nonlocal Observables. Advances in High Energy Physics.2016. DOI: 10.1007/BF01208266.
[21] S. He, L. F. Li, X. X. Zeng. (2017). Holographic van der waals-like phase transition in the Gauss–Bonnet gravity. Nuclear Physics B.915:243-261. DOI: 10.1007/BF01208266.
[22] S.-J. Zhang, E. Abdalla. (2015). Holographic thermalization in charged dilaton anti--de Sitter spacetime. Nuclear Physics. B. Theoretical, Phenomenological, and Experimental High Energy Physics. Quantum Field Theory and Statistical Systems.896:569-586. DOI: 10.1007/BF01208266.
[23] R.-G. Cai, S. He, L. Li, Y.-L. Zhang. et al.(2012). Holographic entanglement entropy in P-wave superconductor phase transition. Journal of High Energy Physics.2012(7, article no. 027). DOI: 10.1007/BF01208266.
[24] X.-X. Zeng, X.-M. Liu, W.-B. Liu. (2014). Holographic thermalization with a chemical potential in Gauss-Bonnet gravity. Journal of High Energy Physics.2014(3, article no. 031). DOI: 10.1007/BF01208266.
[25] A. Buchel, Myers R. C., Niekerk A. v.. (2015). Nonlocal probes of thermalization in holographic quenches with spectral methods. Journal of High Energy Physics.02, article 017. DOI: 10.1007/BF01208266.
[26] C. V. Johnson. (2014). Large phase transitions, finite volume, and entanglement entropy. Journal of High Energy Physics.2014, article 47. DOI: 10.1007/BF01208266.
[27] X.-X. Zeng, H. Zhang, L.-F. Li. (2016). Phase transition of holographic entanglement entropy in massive gravity. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics.756:170-179. DOI: 10.1007/BF01208266.
[28] A. Dey, S. Mahapatra, T. Sarkar. (2016). Thermodynamics and entanglement entropy with Weyl corrections. Physical Review D - Particles, Fields, Gravitation and Cosmology.94(2). DOI: 10.1007/BF01208266.
[29] E. Caceres, A. Kundu. (2012). Holographic thermalization with chemical potential. Journal of High Energy Physics.2012, article 55. DOI: 10.1007/BF01208266.
[30] E. Caceres, P. H. Nguyen, J. F. Pedraza. (2015). Holographic entanglement entropy and the extended phase structure of STU black holes. Journal of High Energy Physics.2015(9, article no. 184). DOI: 10.1007/BF01208266.
[31] S. N. Solodukhin. (2011). Entanglement entropy of black holes. Living Reviews in Relativity.14, article 8. DOI: 10.1007/BF01208266.
[32] X. X. Zeng, L. F. Li. (2017). Van der waals phase transition in the framework of holography. Physics Letters B.764:100-108. DOI: 10.1007/BF01208266.
[33] X.-X. Zeng, W.-B. Liu. (2013). Holographic thermalization in Gauss-Bonnet gravity. Physics Letters. B. Particle Physics, Nuclear Physics and Cosmology.726(1-3):481-487. DOI: 10.1007/BF01208266.
[34] V. Balasubramanian, S. F. Ross. (2000). Holographic particle detection. Physical Review D.61(4). DOI: 10.1007/BF01208266.
[35] D. Kastor, S. Ray, J. Traschen. (2009). Enthalpy and the mechanics of AdS black holes. Classical and Quantum Gravity.26(19)-195011, 16. DOI: 10.1007/BF01208266.
[36] H. Liu, S. J. Suh. (2014). Entanglement tsunami: Universal scaling in holographic thermalization. Physical Review Letters.112(1). DOI: 10.1007/BF01208266.
文献评价指标
浏览 247次
下载全文 24次
评分次数 0次
用户评分 0.0分
分享 15次