首页 » 文章 » 文章详细信息
Advances in High Energy Physics Volume 2017 ,2017-07-10
Effective Natural Supersymmetry from the Yukawa Deflected Mediations
Research Article
Tai-ran Liang 1 Bin Zhu 2 Ran Ding 3 Tianjun Li 4 , 5 , 6
Show affiliations
DOI:10.1155/2017/1585023
Received 2017-04-28, accepted for publication 2017-06-13, Published 2017-06-13
PDF
摘要

The natural supersymmetry (SUSY) requires light (≤1 TeV) stop quarks, light sbottom quark, and gluinos. The first generation of squarks can be effectively larger than several TeV which does not introduce any hierarchy problem in order to escape the constraints from LHC. In this paper we consider a Yukawa deflected mediation to realize the effective natural supersymmetry where the interactions between squarks and messengers are made natural under certain Froggatt-Nielsen U(1)X charges. The first generation squarks obtain large and positive contribution from the Yukawa deflected mediation. The corresponding phenomenology and sparticle spectra are discussed in detail.

授权许可

Copyright © 2017 Tai-ran Liang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The publication of this article was funded by SCOAP3.

图表

Distribution of Higgs mass in [λh,Λ] plane.

Distributions of stop (a) and gluino mass (b) in [λh,Λ] plane.

Distributions of stop (a) and gluino mass (b) in [λh,Λ] plane.

Distribution of fine-tuning measure in [λh,Λ] plane.

通讯作者

Bin Zhu.Department of Physics, Yantai University, Yantai 264005, China, ytu.edu.cn.zhubin@mail.nankai.edu.cn

推荐引用方式

Tai-ran Liang,Bin Zhu,Ran Ding,Tianjun Li. Effective Natural Supersymmetry from the Yukawa Deflected Mediations. Advances in High Energy Physics ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
1

是否收藏?

参考文献
[1] M. B. Green, J. H. Schwarz. (1985). The hexagon gauge anomaly in type 1 superstring theory. Nuclear Physics B.255:93-114. DOI: 10.1016/S0370-1573(99)00042-3.
[2] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi. et al.(2012). Implications of a 125 GeV Higgs for supersymmetric models. Physics Letters B.708(1-2):162-169. DOI: 10.1016/S0370-1573(99)00042-3.
[3] V. Khachatryan, A. M. Sirunyan, A. Tumasya. (2015). Observation of the rare → decay from the combined analysis of CMS and LHCb data. Nature.522:68-72. DOI: 10.1016/S0370-1573(99)00042-3.
[4] C. Beasley, J. J. Heckman, C. Vafa. (2009). GUTs and exceptional branes in F-theory — I. Journal of High Energy Physics.2009(1):58. DOI: 10.1016/S0370-1573(99)00042-3.
[5] R. Donagi, M. Wijnholt. (2011). Model Building with -Theory. Advances in Theoretical and Mathematical Physics.15(5):1237-1317. DOI: 10.1016/S0370-1573(99)00042-3.
[6] R. Ding, T. Li, F. Staub, C. Tian. et al.(2015). Supersymmetric standard models with a pseudo-Dirac gluino from hybrid - and -term supersymmetry breaking. Physical Review D.92(1). DOI: 10.1016/S0370-1573(99)00042-3.
[7] S. Heinemeyer, O. Stal, G. Weiglein. (2012). Interpreting the LHC Higgs search results in the MSSM. Physics Letters B.710(1):201-206. DOI: 10.1016/S0370-1573(99)00042-3.
[8] M. Aaboud, G. Aad, B. Abbott. (2016). Search for bottom squark pair production in proton–proton collisions at TeV with the ATLAS detector. The European Physical Journal C.76(10)-547. DOI: 10.1016/S0370-1573(99)00042-3.
[9] R. Dermíšek, A. Mafi. (2002). SO(10) grand unification in five dimensions: proton decay and the problem. Physical Review D.65(5). DOI: 10.1016/S0370-1573(99)00042-3.
[10] C. Vafa. (1996). Evidence for -theory. Nuclear Physics B.469(3):403-415. DOI: 10.1016/S0370-1573(99)00042-3.
[11] H. K. Dreiner, M. Thormeier. (2004). Supersymmetric Froggatt-Nielsen models with baryon- and lepton-number violation. Physical Review D.69(5). DOI: 10.1016/S0370-1573(99)00042-3.
[12] T. Li. (2002). Gauge symmetry and supersymmetry breaking by discrete symmetry. Nuclear Physics B.633(1-2):83-96. DOI: 10.1016/S0370-1573(99)00042-3.
[13] CMS Collaboration. Search for new physics in the all-hadronic final state with the MT2 variable. . DOI: 10.1016/S0370-1573(99)00042-3.
[14] M. B. Green, J. H. Schwarz, P. West. (1985). Anomaly-free chiral theories in six dimensions. Nuclear Physics B.254:327-348. DOI: 10.1016/S0370-1573(99)00042-3.
[15] I. Gogoladze, Y. Mimura, S. Nandi. (2003). Unity of elementary particles and forces in higher dimensions. Physical Review Letters.91(14). DOI: 10.1016/S0370-1573(99)00042-3.
[16] I. Gogoladze, Y. Mimura, S. Nandi. (2003). Unification of gauge, Higgs and matter in extra dimensions. Physics Letters B.562(3-4):307-315. DOI: 10.1016/S0370-1573(99)00042-3.
[17] ATLAS Collaboration. Further searches for squarks and gluinos in final states with jets and missing transverse momentum at TeV with the ATLAS detector. . DOI: 10.1016/S0370-1573(99)00042-3.
[18] C. Alvarado, A. Delgado, A. Martin, B. Ostdiek. et al.(2015). Dirac triplet extension of the MSSM. Physical Review D.92(3). DOI: 10.1016/S0370-1573(99)00042-3.
[19] F. Staub, T. Ohl, W. Porod, C. Speckner. et al.(2012). A tool box for implementing supersymmetric models. Computer Physics Communications.183(10):2165-2206. DOI: 10.1016/S0370-1573(99)00042-3.
[20] W. Porod. (2003). SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at ee colliders. Computer Physics Communications.153:275-315. DOI: 10.1016/S0370-1573(99)00042-3.
[21] L. J. Hall, D. Pinner, J. T. Ruderman. (2012). A natural SUSY Higgs near 125 GeV. Journal of High Energy Physics.131. DOI: 10.1016/S0370-1573(99)00042-3.
[22] P. Bandyopadhyay, C. Corianò, A. Costantini. (2015). Perspectives on a supersymmetric extension of the standard model with a = 0 Higgs triplet and a singlet at the LHC. Journal of High Energy Physics.45. DOI: 10.1016/S0370-1573(99)00042-3.
[23] W. Porod, F. Staub. (2012). SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM. Computer Physics Communications.183(11):2458-2469. DOI: 10.1016/S0370-1573(99)00042-3.
[24] C. Beasley, J. J. Heckman, C. Vafa. (2009). GUTs and exceptional branes in F-theory—II. Experimental predictions. Journal of High Energy Physics.2009(1):59. DOI: 10.1016/S0370-1573(99)00042-3.
[25] T. Li, D. V. Nanopoulos. (2011). General gauge and anomaly mediated supersymmetry breaking in grand unified theories with vector-like particles. Journal of High Energy Physics.90:1-39. DOI: 10.1016/S0370-1573(99)00042-3.
[26] P. Meade, N. Seiberg, D. Shih. (2009). General Gauge Mediation. Progress of Theoretical Physics Supplement.177:143-158. DOI: 10.1016/S0370-1573(99)00042-3.
[27] Z. Kang, T. Li, T. Liu, C. Tong. et al.(2012). Heavy standard model-like Higgs boson and a light stop from Yukawa-deflected gauge mediation. Physical Review D.86(9). DOI: 10.1016/S0370-1573(99)00042-3.
[28] P. Draper, P. Meade, M. Reece, D. Shih. et al.(2012). Implications of a 125 GeV Higgs boson for the MSSM and low-scale supersymmetry breaking. Physical Review D.85. DOI: 10.1016/S0370-1573(99)00042-3.
[29] M. B. Green, J. H. Schwarz. (1984). Anomaly cancellations in supersymmetric = 10 gauge theory and superstring theory. Physics Letters B.149(1–3):117-122. DOI: 10.1016/S0370-1573(99)00042-3.
[30] A. Hebecker, J. March-Russell. (2001). A minimal orbifold GUT. Nuclear Physics B.613(1-2):3-16. DOI: 10.1016/S0370-1573(99)00042-3.
[31] T. Li. (2001). GUT breaking on. Physics Letters B.520(3-4):377-384. DOI: 10.1016/S0370-1573(99)00042-3.
[32] N. Craig, S. Knapen, D. Shih, Y. Zhao. et al.(2013). A complete model of low-scale gauge mediation. Journal of High Energy Physics.154. DOI: 10.1016/S0370-1573(99)00042-3.
[33] T. Li. (2001). = 2 supersymmetric GUT breaking on orbifolds. Nuclear Physics B.619(1–3):75-104. DOI: 10.1016/S0370-1573(99)00042-3.
[34] F. Staub. (2014). SARAH 4: A tool for (not only SUSY) model builders. Computer Physics Communications.185(6):1773-1790. DOI: 10.1016/S0370-1573(99)00042-3.
[35] X. Lu, H. Murayama, J. T. Ruderman, K. Tobioka. et al.(2014). Natural Higgs Mass in Supersymmetry from Nondecoupling Effects. Physical Review Letters.112. DOI: 10.1016/S0370-1573(99)00042-3.
[36] F. Staub. (2013). SARAH 3.2: Dirac gauginos, UFO output, and more. Computer Physics Communications.184(7):1792-1809. DOI: 10.1016/S0370-1573(99)00042-3.
[37] F. Staub. (2011). Automatic calculation of supersymmetric renormalization group equations and loop corrections. Computer Physics Communications.182(3):808-833. DOI: 10.1016/S0370-1573(99)00042-3.
[38] E. Bertuzzo, C. Frugiuele, T. Gregoire, E. Ponton. et al.(2015). Dirac gauginos, R symmetry and the 125 GeV Higgs. Journal of High Energy Physics.89. DOI: 10.1016/S0370-1573(99)00042-3.
[39] F. Staub. (2014). Beyond-MSSM Higgs sectors. Proceeding of Science.2014. DOI: 10.1016/S0370-1573(99)00042-3.
[40] M. A. Ajaib, I. Gogoladze, F. Nasir, Q. Shafi. et al.(2012). Revisiting mGMSB in light of a 125 GeV Higgs. Physics Letters B.713(4-5):462-468. DOI: 10.1016/S0370-1573(99)00042-3.
[41] K. S. Jeong, Y. Shoji, M. Yamaguchi. (2012). Singlet-doublet Higgs mixing and its implications on the Higgs mass in the PQ-NMSSM. Journal of High Energy Physics.7. DOI: 10.1016/S0370-1573(99)00042-3.
[42] Y. Kawamura. (2001). Split multiplets, coupling unification and an extra dimension. Progress of Theoretical Physics.105:691-696. DOI: 10.1016/S0370-1573(99)00042-3.
[43] R. Blumenhagen. (2009). Gauge coupling unification in F-theory grand unified theories. Physical Review Letters.102(7). DOI: 10.1016/S0370-1573(99)00042-3.
[44] H. An, T. Liu, L. T. Wang. (2012). 125 GeV Higgs boson, enhanced diphoton rate, and gauged -extended MSSM. Physical Review D.86. DOI: 10.1016/S0370-1573(99)00042-3.
[45] V. Bouchard, R. Donagi. (2006). An (5) heterotic standard model. Physics Letters B.633(6):783-791. DOI: 10.1016/S0370-1573(99)00042-3.
[46] J. Jiang, T. Li, D. V. Nanopoulos, D. Xie. et al.(2010). Flipped (5) × (1) models from F-theory. Nuclear Physics B.830(1):195-220. DOI: 10.1016/S0370-1573(99)00042-3.
[47] E. Hardy, J. March-Russell, J. Unwin. (2012). Precision unification in SUSY with a 125GeV Higgs. Journal of High Energy Physics.72. DOI: 10.1016/S0370-1573(99)00042-3.
[48] V. Braun, Y. H. He, B. A. Ovrut, T. Pantev. et al.(2006). The exact MSSM spectrum from string theory. Journal of High Energy Physics.2006(5). DOI: 10.1016/S0370-1573(99)00042-3.
[49] V. Braun, Y.-H. He, B. A. Ovrut, T. Pantev. et al.(2005). A heterotic standard model. Physics Letters B.618(1–4):252-258. DOI: 10.1016/S0370-1573(99)00042-3.
[50] T. Li. (2010). (5) and (10) Models from F-Theory with Natural Yukawa Couplings. Physical Review D.81(6). DOI: 10.1016/S0370-1573(99)00042-3.
[51] F. Staub. (2010). From superpotential to model files for FeynArts and CalcHep/CompHep. Computer Physics Communications.181(6):1077-1086. DOI: 10.1016/S0370-1573(99)00042-3.
[52] J. A. Evans, D. Shih, A. Thalapillil. (2015). Chiral flavor violation from extended gauge mediation. Journal of High Energy Physics.40. DOI: 10.1016/S0370-1573(99)00042-3.
[53] U. Ellwanger. (2012). A Higgs boson near 125 GeV with enhanced di-photon signal in the NMSSM. Journal of High Energy Physics.44. DOI: 10.1016/S0370-1573(99)00042-3.
[54] L. Hall, Y. Nomura. (2001). Gauge unification in higher dimensions. Physical Review D.64(5). DOI: 10.1016/S0370-1573(99)00042-3.
[55] M. Abdullah, I. Galon, Y. Shadmi, Y. Shirman. et al.(2013). Flavored gauge mediation, a heavy Higgs, and supersymmetric alignment. Journal of High Energy Physics.57. DOI: 10.1016/S0370-1573(99)00042-3.
[56] P. Fileviez Pérez. (2012). SUSY spectrum and the Higgs mass in the BLMSSM. Physics Letters B.711(5):353-359. DOI: 10.1016/S0370-1573(99)00042-3.
[57] G. F. Giudice, R. Rattazzi. (1999). Theories with gauge-mediated supersymmetry breaking. Physics Reports.322:419-499. DOI: 10.1016/S0370-1573(99)00042-3.
[58] G. Altarelli, F. Feruglio. (2001). (5) grand unification in extra dimensions and proton decay. Physics Letters B.511(2–4):257-264. DOI: 10.1016/S0370-1573(99)00042-3.
[59] F. Staub. Sarah. . DOI: 10.1016/S0370-1573(99)00042-3.
[60] F. Boudjema, G. Drieu La Rochelle. (2012). Beyond the MSSM Higgs bosons at 125 GeV. Physical Review D.86(1). DOI: 10.1016/S0370-1573(99)00042-3.
[61] M. Hirsch, W. Porod, L. Reichert, F. Staub. et al.(2012). Phenomenology of a supersymmetric extension of the standard model with inverse seesaw mechanism. Physical Review D.86. DOI: 10.1016/S0370-1573(99)00042-3.
[62] C. D. Froggatt, H. B. Nielsen. (1979). Hierarchy of quark masses, cabibbo angles and violation. Nuclear Physics B.147(3-4):277-298. DOI: 10.1016/S0370-1573(99)00042-3.
[63] H. E. Haber, R. Hempfling, A. H. Hoang. (1997). Approximating the radiatively corrected Higgs mass in the minimal supersymmetric model. Zeitschrift für Physik C Particles and Fields.75(3):539-554. DOI: 10.1016/S0370-1573(99)00042-3.
[64] T. Basak, S. Mohanty. (2012). Triplet-singlet extension of the MSSM with a 125 GeV Higgs boson and dark matter. Physical Review D.86. DOI: 10.1016/S0370-1573(99)00042-3.
[65] K. Schmidt-Hoberg, F. Staub. (2012). Enhanced → rate in MSSM singlet extensions. Journal of High Energy Physics.195. DOI: 10.1016/S0370-1573(99)00042-3.
[66] R. Donagi, M. Wijnholt. (2011). Breaking GUT groups in F-theory. Advances in Theoretical and Mathematical Physics.15(6):1523-1603. DOI: 10.1016/S0370-1573(99)00042-3.
[67] K. Benakli, M. D. Goodsell, F. Staub. (2013). Dirac gauginos and the 125 GeV Higgs. Journal of High Energy Physics.73. DOI: 10.1016/S0370-1573(99)00042-3.
[68] A. Font, L. E. Ibáñez. (2009). Yukawa structure from (1) fluxes in F-theory grand unification. Journal of High Energy Physics.2009(2). DOI: 10.1016/S0370-1573(99)00042-3.
[69] M. Cvetič, I. Papadimitriou, G. Shiu. (2004). Erratum to: “Supersymmetric three family (5) grand unified models from type IIA orientifolds with intersecting D6-branes”. Nuclear Physics B.696(1-2):298. DOI: 10.1016/S0370-1573(99)00042-3.
[70] R. Barbieri, G. F. Giudice. (1988). Upper bounds on supersymmetric particle masses. Nuclear Physics B.306(1):63-76. DOI: 10.1016/S0370-1573(99)00042-3.
[71] R. Blumenhagen, M. Cvetič, P. Langacker, G. Shiu. et al.(2005). Toward realistic intersecting D-brane models. Annual Review of Nuclear and Particle Science.55:71-139. DOI: 10.1016/S0370-1573(99)00042-3.
[72] J. Ellis, K. Enqvist, D. Nanopoulos, F. Zwirner. et al.(1986). Observables in low-energy superstring models. Modern Physics Letters A.1(1):57-69. DOI: 10.1016/S0370-1573(99)00042-3.
[73] J. Jiang, T. Li, D. V. Nanopoulos, D. Xie. et al.(2009). . Physics Letters B.677(5325):322. DOI: 10.1016/S0370-1573(99)00042-3.
[74] Y. Amhis, S. W. Banerjee, E. Ben-Haim. Averages of -hadron, -hadron, and -lepton properties as of summer 2014. . DOI: 10.1016/S0370-1573(99)00042-3.
[75] I. Gogoladze, C.-A. Lee, T. Li, Q. Shafi. et al.(2008). Fermion masses and mixings in grand unified theories with noncanonical (1). Physical Review D.78. DOI: 10.1016/S0370-1573(99)00042-3.
[76] CMS Collaboration. Search for supersymmetry in the all-hadronic final state using top quark tagging in pp collisions at sqrt(s) = 13 TeV. . DOI: 10.1016/S0370-1573(99)00042-3.
[77] C. M. Chen, T. Li, D. V. Nanopoulos. (2006). Flipped and unflipped (5) as type IIA flux vacua. Nuclear Physics B.751(1-2):260-284. DOI: 10.1016/S0370-1573(99)00042-3.
[78] ATLAS Collaboration. Search for the Supersymmetric Partner of the Top Quark in the Jets+Emiss Final State at sqrt(s) = 13 TeV. ATLAS. DOI: 10.1016/S0370-1573(99)00042-3.
[79] H. K. Dreiner, H. Murayama, M. Thormeier. (2005). Anomalous flavor (1) for everything. Nuclear Physics B.729(1-2):278-316. DOI: 10.1016/S0370-1573(99)00042-3.
[80] M. Carena, J. R. Espinosa, M. Quirós, C. E. M. Wagner. et al.(1995). Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM. Physics Letters B.355:209-221. DOI: 10.1016/S0370-1573(99)00042-3.
[81] J. Casas, J. Espinosa, M. Quirós, A. Riotto. et al.(1995). Erratum: The lightest Higgs boson mass in the Minimal Supersymmetric Standard Model. Nuclear Physics B.439(1-2):466-468. DOI: 10.1016/S0370-1573(99)00042-3.
[82] Y. Kawamura. (2001). Triplet-doublet splitting, proton stability and an extra dimension. Progress of Theoretical Physics.105(6):999-1006. DOI: 10.1016/S0370-1573(99)00042-3.
[83] H. K. Dreiner, C. Luhn, H. Murayama, M. Thormeier. et al.(2007). Baryon triality and neutrino masses from an anomalous flavor (1). Nuclear Physics B.774(1–3):127-167. DOI: 10.1016/S0370-1573(99)00042-3.
[84] J. A. Evans, D. Shih. (2013). Surveying extended GMSB models with = 125 GeV. Journal of High Energy Physics.93. DOI: 10.1016/S0370-1573(99)00042-3.
[85] Y. Shadmi, P. Z. Szabo. (2012). Flavored gauge-mediation. Journal of High Energy Physics.124. DOI: 10.1016/S0370-1573(99)00042-3.
[86] Y. Kawamura. (2000). Gauge symmetry reduction from the extra space. Progress of Theoretical Physics.103(3):613-619. DOI: 10.1016/S0370-1573(99)00042-3.
文献评价指标
浏览 158次
下载全文 20次
评分次数 0次
用户评分 0.0分
分享 1次